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Abstract

We develop a method for measuring homology classes. This involves two problems.
First, we define the size of a homology class, using ideas from relative homology.
Second, we define an optimal basis of a homology group to be the basis whose
elements’ size have the minimal sum. We provide a greedy algorithm to compute
the optimal basis and measure classes in it. The algorithm runs in O(βn3 log2 n)
time, where n is the size of the simplicial complex and β is the Betti number of the
homology group. Finally, we prove the stability of our result. The algorithm can be
adapted to measure any given class.

Key words: Computational Topology, Computational Geometry, Homology,
Persistent Homology, Homology Basis, Stability, Finite Field Linear Algebra
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1 Introduction

The problem of computing the topological features of a space has recently
drawn much attention from researchers in various fields, such as high-dimensional
data analysis [1,2], graphics [3,4], networks [5] and computational biology [6,7].
Topological features are often preferable to purely geometric features, as they
are more qualitative and global, and tend to be more robust. If the goal is to
characterize a space, therefore, features which incorporate topology seem to
be good candidates.

Once we are able to compute topological features, a natural problem is to rank
the features according to their importance. The significance of this problem
can be justified from two perspectives. First, unavoidable errors are introduced
in data acquisition, in the form of traditional signal noise, and finite sampling
of continuous spaces. These errors may lead to the presence of many small
topological features that are not “real”, but are simply artifacts of noise or of
sampling [8]. Second, many problems are naturally hierarchical. This hierarchy
– which is a kind of multiscale or multi-resolution decomposition – implies that
we want to capture the large scale features first. See Figure 1 (Left,Center)
for examples.

Fig. 1. Left,Center: A disk with three holes and a 2-handled torus are really more like
an annulus and a 1-handled torus, respectively, because the large features are more
important. Right: A topological space formed from three circles. See accompanying
discussion in the text.

The topological features we use are homology groups over Z2, due to their
ease of computation. (Thus, throughout this paper, all the additions are mod
2 additions.) We would then like to quantify or measure homology classes, as
well as collections of classes. Specifically, there are two problems we would like
to solve:

(1) Measuring the size of a homology class: We need a way to quantify
the size of a given homology class, and this size measure should agree
with intuition. For example, in Figure 1 (Left), the measure should be
able to distinguish the one large class (of the 1-dimensional homology
group) from the two smaller classes.

(2) Choosing a basis for a homology group: We would like to choose
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a “good” set of homology classes to be the generators for the homol-
ogy group (of a fixed dimension). Suppose that β is the dimension of
this group, and that we are using Z2 coefficients; then there are 2β − 1
nontrivial homology classes in total. For a basis, we need to choose a
subset of β of these classes, subject to the constraint that these β gen-
erate the group. The criterion of goodness for a basis is based on an
overall size measure for the basis, which relies in turn on the size mea-
sure for its constituent classes. For instance, in Figure 1 (Right), we must
choose three from the seven nontrivial 1-dimensional homology classes:
{[z1], [z2], [z3], [z1]+[z2], [z1]+[z3], [z2]+[z3], [z1]+[z2]+[z3]}. In this case,
the intuitive choice is {[z1], [z2], [z3]}, as this choice reflects the fact that
there is really only one large cycle.

Furthermore, we make two additional requirements on the solution of afore-
mentioned problems. First, the solution ought to be computable for topological
spaces of arbitrary dimension. Second the solution should not require that the
topological space be embedded, for example in a Euclidean space; and if the
space is embedded, the solution should not make use of the embedding. These
requirements are natural from the theoretical point of view, but may also be
justified based on the following applications:

• In machine learning, it is often assumed that the data lives in a manifold
whose dimension is much smaller than the dimension of the embedding
space.

• In the study of shape, it is common to enrich the shape with other quantities,
such as curvature, or color and other physical quantities. This leads to high
dimensional manifolds (e.g, 5-7 dimensions) embedded in high dimensional
ambient spaces [9].

Although there are existing low dimensional techniques for approaching the
problems we have laid out, to our knowledge, there are no definitions and
algorithms satisfying the two requirements.

1.1 Related Works

Persistent homology [10,11,12,13,14,15] is designed to track the lifetimes of
homological features over the course of a filtration of a topological space. At
first blush, it might seem that the powerful techniques of this theory are ideally
suited to solving the problems we have set out. However, due to their somewhat
different motivation, these techniques do not quite yield a solution. There are
two reasons for this. First, the persistence of a feature depends not only on
the space in which the feature lives, but also on the filtering function chosen.
In the absence of a geometrically meaningful filter, it is not clear whether the
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persistence of a feature is a meaningful representation of its size. Second, and
more importantly, the persistence only gives information for homology classes
which ultimately die; for classes which are intrinsically part of the topological
space, and which thus never die, the persistence is infinite. However, it is
precisely these essential (or non-persistent) classes that we care about. In
more recent work, Cohen-Steiner et al.[16] have extended persistent homology
in such a way that essential homology classes also have finite persistences.
However, the persistences thus computed still depend on the filter function,
and furthermore, do not always seem to agree with an intuitive notion of size.

Zomorodian and Carlsson [17] take a different approach to solving the local-
ization problem. Their method starts with a topological space and a cover,
a set of spaces whose union contains the original space. A blowup complex
is built up which contains homology classes of all the spaces in the cover.
The authors then use persistent homology to identify homology classes in the
blowup complex which correspond to a same homology class in the given topo-
logical space. The persistent homology algorithm produces a complete set of
generators for the relevant homology group, which forms a basis for the group.
However, both the quality of the generators and the complexity of the algo-
rithm depend strongly on the choice of cover; there is, as yet, no suggestion
of a canonical cover.

Erickson and Whittlesey [18] showed how to compute the optimal basis for a
1-dimensional homology group in a 2-manifold. The authors also showed how
the idea carries over to finding the optimal generators of the first fundamental
group, though the proof is considerably harder in this case. A similar measure
was used by Wood et al. [8] to remove topological noise of 2-dimensional
surface. Both works are restricted to 2-dimensional topological space.

In this paper, we use the idea of growing geodesic balls. A similar idea has
been used in [19,8]. However, this latter work depends on low dimensional
geometric reasoning, and hence is restricted to 1-dimensional homology classes
in 2-manifold.

1.2 Our Contributions

In this paper, we solve the aforementioned two problems. Our contributions
include:

• Definitions of the size of homology classes and the optimal homology basis.
• A provably correct greedy algorithm to compute the optimal homology basis

and measure its classes. This algorithm uses the persistent homology.
• An improvement of the straightforward algorithm using finite field linear

algebra.
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• A proof of the stability of our result with respect to small changes in certain
quantities (to be explained in greater detail in Section 6).

• An algorithm to measure and localize a given class (Section 7).

2 Preliminaries

In this section, we briefly describe the background necessary for our work,
including a discussion of homology groups, persistent homology and relative
homology. Please refer to [20] for details of homology and relative homology,
and [15] for persistent homology. For simplicity, we restrict our discussion to
the combinatorial framework of simplicial homology over Z2 field.

Homology Groups. Within a given simplicial complex K, a d-chain is
a formal sum of d-simplices in K, c =

∑
σ∈K aσσ, aσ ∈ Z2. All the d-chains

form the group of d-chains, Cd(K). The boundary of a d-chain is the sum of
the (d − 1)-faces of all the d-simplices in the chain. The boundary operator
∂d : Cd(K) → Cd−1(K) is a group homomorphism.

A d-cycle is a d-chain without boundary. The set of d-cycles forms a sub-
group of the chain group, which is the kernel of the boundary operator,
Zd(K) = ker(∂d). A d-boundary is the boundary of a (d + 1)-chain. The set
of d-boundaries forms a group, which is the image of the boundary operator,
Bd(K) = img(∂d+1). It is not hard to see that a d-boundary is also a d-cycle.
Therefore, Bd(K) is a subgroup of Zd(K). A d-cycle which is not a d-boundary,
z ∈ Zd(K)\Bd(K), is a nonbounding cycle. In our case, the coefficients belong
to a field, namely Z2; when this is the case, the groups of chains, boundaries
and cycles are all vector spaces. Note that this is not true when the homology
is over a ring which is not a field, such as Z.

The d-dimensional homology group is defined as the quotient group Hd(K) =
Zd(K)/Bd(K). An element in Hd(K) is a homology class, which is a coset of
Bd(K), [z] = z+Bd(K) for some d-cycle z ∈ Zd(K). If z is a d-boundary, [z] =
Bd(K) is the identity element of Hd(K). Otherwise, when z is a nonbounding
cycle, [z] is a nontrivial homology class and z is called a representative cycle
of [z]. Cycles in the same homology class are homologous to each other, which
means their difference is a boundary.

The dimension of the homology group, which is referred to as the Betti number,

βd = dim(Hd(K)) = dim(Zd(K))− dim(Bd(K)).
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It can be computed with a reduction algorithm based on row and column
operations of the boundary matrices [20]. Various reduction algorithms have
been devised for different purposes [21,10,12].

Note that since the field is Z2, the set of d-chains is in one-to-one corre-
spondence with the set of subsets of d-simplices. A d-chain corresponds to a
nd-dimensional vector, whose non-zero entries correspond to the included d-
simplices. Here nd is the number of d-simplices in K. Computing the boundary
of a d-chain corresponds to multiplying the chain vector with a boundary ma-
trix [b1, ..., bnd

], whose column vectors are boundaries of d-simplices in K. By
slightly abusing the notation, we call the boundary matrix ∂d.

We call a subset of simplices of a given simplicial complex a subcomplex if
this subset itself is a simplicial complex. The following notation will prove
convenient. We say that a d-chain c ∈ Cd(K) is carried by a subcomplex K0

when all the d-simplices of c belong to K0, formally, c ⊆ K0. We denote
vert(K) as the set of vertices of the simplicial complex K, vert(c) as that of
the chain c.

Replacing simplexes by their continuous images in a given topological space
gives singular homology. The simplicial homology of a simplicial complex is
naturally isomorphic to the singular homology of its geometric realization.
This implies, in particular, that the simplicial homology of a space does not
depend on the particular simplicial complex chosen for the space. In figures
of this paper, we often ignore the simplicial complex and only show the con-
tinuous images of chains.

Persistent Homology. Given a topological space X and a filter function
f : X → R, persistent homology studies the homology classes of the sublevel
sets, Xt = f−1(−∞, t]. A nontrivial homology class in Xt1 may become trivial
in Xt2 , t1 < t2, (formally, when induced by the inclusion homomorphism).
Persistent homology tries to capture this phenomenon by measuring the times
at which a homology class is born and dies. The persistence, or life time of the
class is the difference between its death and birth times. Those with longer
lives tell us something about the global structure of the space X, as described
by the filter function. Note that the essential, that is, nontrivial homology
classes of the given topological space X will never die.

Edelsbrunner et al. [10] devised an O(n3) algorithm to compute the persistent
homology. Its input are a simplicial complex K and a filter function f , which
assigns each simplex in K a real value. Simplices of K are sorted in ascending
order according to their filter function values. This order is actually the order
in which simplices enter the sublevel set f−1(−∞, t] while t increases. For
simplicity, in this paper we call this ordering the simplex-ordering of K with
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regard to f . Note that within the simplex-ordering, a simplex must appear
after all of its faces. With this restriction, any sublevel set is a subcomplex. All
the sublevel sets taken together form a filtration, namely, a nested sequence
that begins with the empty complex and ends with the complete complex,
∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K. Given this input, the output of the algorithm
is the birth and death times of homology classes.

More specifically, the persistence algorithm is based on column reductions of
boundary matrices. The latest version of this algorithm [7,15] unifies boundary
matrices of different dimensions into one overall incidence matrix D. Rows and
columns of D correspond to simplices of K, indexed in the simplex-ordering.
An entry of D is 1 if and only if its corresponding entry is 1 in the corre-
sponding boundary matrix. The algorithm performs column reductions on D
from left to right. Each new column is reduced by addition with the already
reduced columns, until its lowest nonzero entry is as high as possible. The re-
duced matrix R = DV provides rank(D) pairings of simplices, in which each
simplex appears at most once. The filter function values of each pairing are
the birth and death times of a persistent homology class. Unpaired simplices
are paired with +∞ and correspond to essential classes. Simplices paired with
+∞ or paired on the left are positive, and the rest are negative.

The reduction is completely recorded in the matrix V . Columns of V cor-
responding to positive simplices form bases of cycle groups. Columns corre-
sponding to positive simplices paired with +∞ are cycles representing essential
classes.

Relative Homology. Given a simplicial complex K and a subcomplex
K0 ⊆ K, we may wish to study the structure of K by ignoring all the chains
in K0. We consider two d-chains, c1 and c2 to be the same if their difference
is carried by K0. The objects we are interested in are then defined as these
equivalence classes, which form a quotient group, Cd(K,K0) = Cd(K)/Cd(K0).
We call it the group of relative chains, whose elements (cosets), are called
relative chains.

The boundary operator ∂d : Cd(K) → Cd−1(K) induces a relative boundary
operator, ∂K0

d : Cd(K,K0) → Cd−1(K,K0). Analogous to the way we define
Zd(K), Bd(K) and Hd(K) in Cd(K), we define the group of relative cycles,
the group of relative boundaries and the relative homology group in Cd(K,K0),
denoted as Zd(K,K0), Bd(K,K0) and Hd(K,K0), respectively. An element in
Zd(K,K0)\Bd(K,K0) is a nonbounding relative cycle.

The following notation will prove convenient. We define a homomorphism
φK0 : Cd(K) → Cd(K,K0) mapping d-chains to their corresponding relative
chains, φK0(c) = c+ Cd(K0). This homomorphism induces another homomor-
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phism, φ∗K0
: Hd(K) → Hd(K,K0), mapping homology classes of K to their

corresponding relative homology classes, φ∗K0
(h) = φK0(z)+Bd(K,K0) for any

z ∈ h.

Given a d-chain c ∈ Cd, its corresponding relative chain φK0(c) is a relative
cycle if and only if ∂d(c) is carried byK0. Furthermore, it is a relative boundary
if and only if there is a (d + 1)-chain c′ ∈ Cd+1(K) such that c − ∂d+1(c

′) is
carried by K0.

These ideas are illustrated in Figure 2. Although z1 and z2 are both nonbound-
ing cycles inK, φK0(z1) is a nonbounding relative cycle whereas φK0(z2) is only
a relative boundary. Although chains c1 and c2 are not cycles inK, φK0(c1) and
φK0(c2) are relative cycles homologous to φK0(z1) and φK0(z2), respectively.

Fig. 2. A disk with two holes, whose triangulation is K. Simplices of K lying com-
pletely in the dotted rectangle form a subcomplex K0. The 1-dimensional relative
homology group H1(K, K0) has dimension 1, although H1(K) has dimension 2. The
nontrivial class [z2] is carried by K0.

Note that [z1] and [z2] are both nontrivial homology classes in K. But their
corresponding classes in the relative homology group may be trivial. We say
a subcomplex K0 carries a class h if h has a trivial image in the relative
homology group Hd(K,K0), formally, φ∗K0

(h) = 0 + Bd(K,K0). Intuitively,
this means that h disappears if we delete K0 from K, by contracting it into a
point and modding it out. The following lemma gives us more intuition behind
this definition.

Lemma 1 K0 carries h if and only if it carries a cycle of h.

Proof. For any cycle z ∈ h, the relative chain φK0(z) is a relative boundary
if and only if there is a (d+ 1)-chain c′ ∈ Cd+1(K) such that z − ∂d+1(c

′) ∈ h
is carried by K0. ¤
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For example, in Figure 2, φ∗K0
([z1]) is a nontrivial relative homology class,

whereas φ∗K0
([z2]) is trivial. We say that the class [z2] is carried by K0. This

concept plays an important role in our definition of the size measure. Further
details will be given in Section 3.1.

Rank Computations of Sparse Matrices over Finite Fields. Wiede-
mann [22] presented a randomized algorithm to capture the rank of a sparse
matrix over finite field. The expected time of the algorithm isO(n(ω+n log n) log n),
where n is the maximal dimension of the matrix and ω is the total number of
nonzero entries.

3 Defining the Problem

In this section, we provide a technique for ranking homology classes according
to their importance. Specifically, we solve the two problems mentioned in Sec-
tion 1 by formally defining (1) a meaningful size measure for homology classes
that is computable in arbitrary dimension; and (2) an optimal homology basis
which distinguishes large classes from small ones effectively.

The Discrete Geodesic Distance. In order to measure the size of ho-
mology classes, we need a notion of distance. As we will deal with a simplicial
complex K, it is most natural to introduce a discrete metric, and correspond-
ing distance functions. We define the discrete geodesic distance from a vertex
p ∈ vert(K), fp : vert(K) → R, as follows. Suppose each edge in K has
a nonnegative weight, for any vertex q ∈ vert(K), fp(q) = dist(p, q) is the
length of the shortest path connecting p and q, in the 1-skeleton of K. We
may then extend this distance function from vertices to higher dimensional
simplices naturally. For any simplex σ ∈ K, fp(σ) is the maximal function
value of the vertices of σ, fp(σ) = maxq∈vert(σ) fp(q). This extension has the
same effect as linearly interpolating the function on the interiors of the sim-
plices (the sublevel sets of the two extensions are homotopy equivalent). Fi-
nally, we define a geodesic ball Br

p, p ∈ vert(K), r ≥ 0, as the subset of K,
Br
p = {σ ∈ K | fp(σ) ≤ r}. It is straightforward to show that these subsets

are in fact subcomplexes.

3.1 Measuring the Size of a Homology Class

Using relative homology, we define the size of a homology class as follows.
Given a simplicial complex K, assume we are given a collection of subcom-
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plexes L = {L ⊆ K}. Furthermore, each of these subcomplexes is endowed
with a size. In this case, we define the size of a homology class h as the size
of the smallest L carrying h (assuming one such L exists, which can be guar-
anteed if L is properly chosen).

Definition 2 The size of a class h, S(h), is the size of the smallest measurable
subcomplex carrying h, formally,

S(h) = min
L∈L

size(L) s.t. φ∗L(h) = Bd(K,L).

In this paper, we take L to be the set of discrete geodesic balls, L = {Br
p |

p ∈ vert(K), r ≥ 0}. The size of a geodesic ball is naturally its radius r. The
smallest geodesic ball carrying h is denoted as Bmin(h) for convenience, whose
radius is S(h). In Figure 3 (Left), the three geodesic balls centered at p1, p2

and p3 are the smallest geodesic balls carrying nontrivial homology classes
corresponding to the three holes. Their radii are the size of the three classes.
In Figure 3 (Right), the smallest geodesic ball carrying a nontrivial homology
class is the shaded one centered at q2, not the one centered at q1. Note that
these geodesic ball may not look like Euclidean balls in the embedding space.

Fig. 3. Left: On a disk with three holes, the three shaded regions are the three
smallest geodesic balls measuring the three corresponding classes.
Right: On a tube, the smallest geodesic ball is centered at q2, not q1.

3.2 The Optimal Homology Basis

For the d-dimensional Z2 homology group whose dimension (Betti number) is
βd, there are 2βd − 1 nontrivial homology classes. However, we only need βd of
them to form a basis. The basis should be chosen wisely so that we can easily
distinguish important homology classes from noise. See Figure 1 (Right) for
an example. There are 23 − 1 = 7 nontrivial homology classes; we need three
of them to form a basis. We would prefer to choose {[z1], [z2], [z3]} as a basis,
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rather than {[z1]+[z2]+[z3], [z2]+[z3], [z3]}. The former indicates that there is
one big cycle in the topological space, whereas the latter gives the impression
of three large classes.

In keeping with this intuition, the optimal homology basis is defined as follows.

Definition 3 The optimal homology basis is the basis for the homology group
whose elements’ size have the minimal sum, formally,

Hd = argmin
{h1,...,hβd

}

βd∑
i=1

S(hi), s.t. dim({h1, ..., hβd
}) = βd.

This definition guarantees that large homology classes appear as few times as
possible in the optimal homology basis. In Figure 1 (Right), the optimal basis
will be {[z1], [z2], [z3]}, which has only one large class.

This definition uses L1-norm on the vector of sizes. Since all class sizes are
nonnegative, and further, since the problem has a matroid structure (to be
demonstrated in the next section), it will turn out that we can use any Lp-norm
in the definition and still get the same optimal homology basis. An exception,
however, is the L∞-norm. In this case, there may be many different optimal
bases. The optimal basis defined using L1-norm is one of them.

For each class in the basis, we need a cycle representing it. According to
Lemma 1, Bmin(h), the smallest geodesic ball carrying h, carries at least one
cycle of h. We localize each class in the optimal basis by its localized cycles,
which are cycles of h carried by Bmin(h). This is a fair choice because it is
consistent with the size measure of h and it is computable in polynomial time.

Please note that the localized cycle may not be the simplest one. The cycle
may wiggle a lot inside the geodesic ball, Bmin(h). The authors addressed this
issue in much greater detail in [23,24]. In these papers, different size definitions
are provided; for example, the localized cycle may be defined as the represen-
tative cycle with the minimal number of simplices. These new definitions give
representative cycles which are simple (concise) in both geometry and algebra.
Unfortunately (and perhaps not surprisingly), it turns they are NP-hard to
compute and even to approximate.
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4 The Algorithm

In this section, we introduce an algorithm to compute the optimal homology
basis as defined in Definition 3. For each class in the basis, we measure its size,
and represent it with one of its localized cycles. We first introduce an algorithm
to compute the smallest homology class, namely, Measure-Smallest(K). Based
on this procedure, we provide the algorithm Measure-All(K), which computes
the optimal homology basis. The algorithm takes O(βdn

4) time, where βd is
the Betti number for d-dimensional homology group and n is the cardinality
of the input simplicial complex K. Please note that in the rest of the paper,
we assume d, the dimension of the relevant homology group, is given.

4.1 Computing the Smallest Homology Class

The procedure Measure-Smallest(K) measures and localizes the smallest non-
trivial homology class, namely, the one with the smallest size,

hmin = argmin
h∈Hd(K):h6=Bd(K)

S(h).

The output of this procedure will be a pair (Smin, zmin), namely, the size and
a localized cycle of hmin. According to the definitions, this pair is determined
by the smallest geodesic ball carrying hmin, namely, Bmin(hmin).

It is straightforward to see that the ballBmin(hmin) is also the smallest geodesic
ball carrying any nontrivial homology class of K. It can be computed by
computing Br(p)

p for all vertices p, where Br(p)
p is the smallest geodesic ball

centered at p which carries any nontrivial homology class. When all the Br(p)
p ’s

are computed, we compare their radii, r(p)’s, and pick the smallest ball as
Bmin(hmin).

For each vertex p, we compute Br(p)
p by applying the persistent homology

algorithm to K with the discrete geodesic distance from p, fp, as the filter
function. Note that a geodesic ball Br

p is the sublevel set f−1
p (−∞, r] ⊆ K.

Nontrivial homology classes of K are essential homology classes in the per-
sistent homology algorithm. (In the rest of this paper, we may use “essential
homology classes” and “nontrivial homology classes of K” interchangeable.)
Therefore, the birth time of the first essential homology class, namely, the
filter function value of the very first d-simplex that is positive and paired with
+∞, is r(p), and the subcomplex f−1

p (−∞, r(p)] is Br(p)
p .

Once we determine Bmin(hmin), whose center is denoted as pmin, the size Smin
is the radius r(pmin). A localized cycle can be decided by the persistent homol-
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ogy algorithm with the filter function fpmin
. Recall that the matrix V in the

persistence reduction R = DV provides cycles representing essential classes.
The localized cycle zmin is the column of V corresponding to the very first
d-simplex that is positive and paired with +∞. The reason is it represents the
youngest essential class, which is hmin. Plus it is carried by Bmin(hmin).

4.2 Computing the Optimal Homology Basis

In this section, we present the algorithm for computing the optimal homology
basis defined in Definition 3, namely, Hd. We first show that the optimal
homology basis can be computed in a greedy manner. Second, we introduce
an efficient greedy algorithm.

4.2.1 Computing Hd in a Greedy Manner

As has been noted, over the Z2 field, the homology group is a vector space.
It, together with the family of its linearly independent subsets, form a vector
matroid. Using the size of homology classes as a weight function, we have a
weighted matroid. Matroid theory [25,26] suggests a greedy method to com-
pute the optimal homology basis as follows.

For convenience, let H be the set of nontrivial d-dimensional homology classes
(i.e. the homology group minus the trivial class). Denote seq(H) = (h1, h2, ..., h(2βd−1))
as the sequence of all the classes of H sorted in the monotonically increasing
order according to size, formally, S(hi) ≤ S(hi+1) for all i. Repeatedly compute
the smallest class in seq(H) and pick each one which is linearly independent
of those we have already picked, until βd are picked. The collected βd classes
{hi1 , hi2 , ..., hiβd

} form the optimal homology basis Hd. (Note that the h’s are
ordered by size, i.e. S(hik) ≤ S(hik+1

).)

However, this naive method may be exponential in βd. For example, we may
have to compute all the linear combinations of {hi1 , hi2 , ..., hi(βd−1)

} before we
find hiβd

. Next, we present our greedy algorithm which is polynomial.

4.2.2 Computing Hd with a Sealing Technique

In this section, we introduce a polynomial greedy algorithm for computing Hd.
Instead of computing the smallest classes in seq(H) one by one, our algorithm
uses a sealing technique and takes time polynomial in βd and n. Intuitively,
when the smallest l classes in Hd are picked, we make them trivial by adding
new cells to the given complex. In the augmented complex, any linear com-
bination of these picked classes becomes trivial, and the smallest nontrivial
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Fig. 4. Left: the original complex K.
Right: the augmented complex K ′ after destroying the smallest class, [z1].

class is the (l + 1)’th one in Hd.

The algorithm starts by measuring and localizing the smallest homology class
of the given simplicial complex K (using the procedure Measure-Smallest(K)
introduced in Section 4.1), which is also the first class we choose for Hd. We
make this class trivial by sealing one of its cycles – i.e. the localized cycle
we computed – with a new cell. Next, we measure and localize the smallest
homology class of the augmented complex K ′. This class is the second smallest
homology class in Hd. We make this class trivial again and proceed for the
third smallest class in Hd. This process is repeated for βd rounds, yielding Hd.

We make a homology class trivial by sealing the class’s localized cycle, which
we have computed. To seal this cycle z, we add a new (d + 1)-cell whose
boundary is exactly this cycle. In Figure 4, a 1-cycle with four edges, z1, is
sealed up with one new 2-cell. Please note that the new cell is not a simplex
and the augmented complex K ′ is a cell complex, not a simplicial complex.

It is essential to make sure the new cell does not influence our measurement.
We assign the new cell +∞ filter function values, formally, fp(σ) = +∞ for
all p ∈ vert(K) and σ ∈ K ′\K.

The algorithm is illustrated in Figure 4. Assuming unit edge lengths, the 4-
edge cycle, z1, and the 8-edge cycle, z2, are the localized cycles of the smallest
and the second smallest homology classes (S([z1]) = 2,S([z2]) = 4). The non-
bounding cycle z3 = z1 + z2 corresponds to the largest nontrivial homology
class [z3] = [z1] + [z2] (S([z3]) = 5). After the first round, we choose [z1] as
the smallest class in H1. Next, we destroy [z1] by sealing z1, which yields the
augmented complex K ′. This time, we choose [z2], giving H1 = {[z1], [z2]}.

Theorem 4 The procedure Measure-All(K) computes Hd.

Proof. We prove the theorem by showing that the sealing technique produces
the same result as the naive greedy algorithm, namely, Hd = {hi1 , hi2 , ..., hβd

},
assuming the classes are sorted according to size, S(hik) ≤ S(hik+1

). We show
that for any l ∈ [0, βd), after computing and sealing the first l classes of Hd,
i.e. {hi1 , ..., hil}, the next class we choose is exactly hil+1

. In other words, the
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localized cycle and size of the smallest class of the augmented complex K l are
equal to that of hil+1

.

First, any class between hil and hil+1
in seq(H) will not be chosen. Any such

class hj is linearly dependent on classes that have already been chosen, namely,
{hi1 , ..., hil}. Since these classes have been sealed up, a cycle of hj is a boundary
in K l. Thus, hj cannot be chosen.

Second, according to algebra, one new cell can only destroy one class. There-
fore, for any class in seq(H) that is not linearly dependent on {hi1 , ..., hil}, it
is nontrivial in K l.

Third, the smallest class ofK l, hmin(K
l), corresponds to hil+1

: any new simplex
belonging to K l\K will not change the computation of the geodesic balls Br

p

with finite radius r, and thus will change neither the size measurement nor the
localization. Thus, the hmin(K

l) computed by the sealing technique is identical
to hil+1

computed by the naive greedy method, in terms of the size and the
localized cycle. ¤

4.3 Complexity of the Non-Refined Algorithm

Throughout the algorithm, at most βd new cells are added. The size of the
augmented cell complex K ′ is O(n + βd). The procedure Measure-All(K) runs
the procedure Measure-Smallest βd times with K ′ as input. The procedure
Measure-Smallest runs the persistent homology algorithm on K ′ using filter
function fp for each vertex of the original complex, K, and thus takes O(n(n+
βd)

3) = O(n4) time. In total, it takes O(βdn
4) time to compute the optimal

basis.

5 An Improvement Using Finite Field Linear Algebra

In this section, we present an improvement on the algorithm presented in the
previous section, more specifically, an improvement on computing the smallest
geodesic ball carrying any nontrivial class (the procedure Measure-Smallest).
The idea is based on the finite field linear algebra behind the homology.

In Section 5.1, we observe that for neighboring vertices, p1 and p2, the birth
times of the first essential homology class using fp1 and fp2 as filter functions
are close (Theorem 6). This observation suggests that for each p, instead of
computing Br(p)

p , we may just test whether the geodesic ball centered at p with
a certain radius carries any essential homology class. In Section 5.2, with some
algebraic insight, we reduce the problem of testing whether a geodesic ball
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carries any essential homology class to the problem of comparing dimensions
of two vector spaces. Furthermore, we use Lemma 7 to reduce the problem to
rank computations of sparse matrices on the Z2 field, for which we have ready
tools from the literature. In Section 5.3, we conclude with detailed complexity
analysis.

In this section, we will consider all edges to have weights of 1, for simplicity of
exposition. However, please note that it is possible to generalize all results to
deal with general (real) edge weights, though the algorithm becomes somewhat
messier. We also assume that K has a single component; multiple components
can be accommodated with a simple modification.

Complexity. In doing so, we improve the complexity to O(βdn
3 log2 n).

More detailed complexity analysis is provided in Section 5.3.

Remark 5 Cohen-Steiner et al.[7] provided a linear algorithm to maintain
the persistences while changing the filter function. However, this algorithm is
not directly applicable in our context. The reason is that it takes O(n) time
to update the persistences for a transposition in the simplex-ordering. In our
case, even for filter functions of two neighboring vertices, often it takes O(n2)
transpositions to transform one simplex-ordering into the other. See Figure
5 for example. Therefore, updating the persistences while changing the filter
function takes O(n2)× O(n) = O(n3) time. This is the same amount of time
it would take to compute the persistences from scratch.

Fig. 5. On the plane, when we change the filter function from fp1 to fp2 , in order
to update the simplex-ordering, we should switch the order of the two blocks of
simplices Br

p1\B
r
p2 and Br

p2\B
r
p1 , in which Br

p1 and Br
p2 are geodesic balls centered

at p1 and p2 with a same radius, r. When r is big, these two blocks can have O(n)
simplices. We then need O(n2) transpositions to update the simplex-ordering.
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5.1 Observation: Neighboring Vertices Have Similar Geodesic Distance Func-
tions

Since the filter functions of two neighboring vertices, fp1 and fp2 , are close to
each other, the birth times of the first nonbounding cycles in both filters are
close as well. This leads to Theorem 6. A simple proof is provided.

Theorem 6 If two vertices p1 and p2 are neighbors, the birth times of the
first nonbounding cycles for filter functions fp1 and fp2 differ by no more than
1.

Proof. p1 and p2 are neighbors implies that for any point q,

fp2(q) ≤ fp2(p1) + fp1(q) = 1 + fp1(q),

in which the inequality follows the triangular inequality. Therefore, Br(p1)
p1

is

a subset of Br(p1)+1
p2

. The former carries nonbounding cycles implies that the
latter does too, and thus r(p2) ≤ r(p1) + 1. Similarly, we have r(p1) ≤ r(p2) +
1. ¤

This theorem suggests a way to avoid computing Br(p)
p for all p ∈ vert(K)

in the procedure Measure-Smallest. Since our objective is to find the mini-
mum of the r(p)’s, we do a breadth-first search through all the vertices with
global variables rmin and pmin recording the smallest r(p) we have found and
its corresponding center p, respectively. We start by applying the persistent
homology algorithm on K with filter function fp0 , where p0 is an arbitrary
vertex of K. Initialize rmin as the birth time of the first nonbounding cycle of
K, r(p0), and pmin as p0. Next, we do a breadth-first search through the rest
vertices. For each vertex pi, i 6= 0, there is a neighbor pj we have visited (the
parent vertex of pi in the breath-first search tree). We know that r(pj) ≥ rmin
and r(pi) ≥ r(pj)− 1 (Theorem 6). Therefore, r(pi) ≥ rmin− 1. We only need
to test whether the geodesic ball Brmin−1

pi
carries any nonbounding cycle of K.

If so, rmin is decremented by one, and pmin is updated to pi. After all vertices
are visited, pmin and rmin give us the ball we want.

However, testing whether the subcomplex Brmin−1
pi

carries any nonbounding
cycle of K is not as easy as computing nonbounding cycles of the subcomplex.
A nonbounding cycle of Brmin−1

pi
may not be nonbounding in K as we require.

For example, in Figure 6, the simplicial complex K is a torus with a tail. The
shaded geodesic ball in the first figure does not carry any nonbounding cycle
of K, although it carries its own nonbounding cycles. The geodesic ball in the
second figure is the one that carries nonbounding cycles of K. Therefore, we
need algebraic tools to distinguish nonbounding cycles of K from those of the
subcomplex Brmin−1

pi
.
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Fig. 6. Only the ball in the second figure carries nonbounding cycles of K, although
in both figures the balls have nontrivial topology.

5.2 Procedure Contain-Nonbounding-Cycle: Testing Whether a Subcomplex Car-
ries Nonbounding Cycles of K

In this section, we present the procedure for testing whether a subcomplex
K0 carries any nonbounding cycle of K. A chain in K0 is a cycle if and only
if it is a cycle of K. However, solely from K0, we are not able to tell whether
a cycle carried by K0 bounds or not in K. Instead, we write the set of cycles
of K carried by K0, ZK0

d (K), and the set of boundaries of K carried by K0,
BK0
d (K), as sets of linear combinations with certain constraints. Consequently,

we are able to test whether any cycle carried by K0 is nonbounding in K by
comparing the dimensions of ZK0

d (K) and BK0
d (K). Lemma 7 shows that these

dimensions can be computed by rank computations of sparse matrices.

To some extent, the idea of this section is similar in spirit to [27]. However,
note that the two works developed independently. 1

5.2.1 Expressing ZK0
d (K) and BK0

d (K) as Sets of Linear Combinations with
Certain Constrains

The set of boundaries and the set of cycles of K carried by K0 are

BK0
d (K) = Bd(K) ∩ Cd(K0) and

ZK0
d (K) = Zd(K) ∩ Cd(K0),

respectively. They are both vector spaces and the former is a subspace of
the latter. It is not hard to show that the subcomplex K0 carries nonbounding
cycles ofK if and only if the dimensions of these two vector spaces are different.
We now express them as linear combinations with certain constraints such that
we can compute their dimensions using algebraic tools.

Let Ĥd = [z1, ..., zβd
] be the matrix whose column vectors are arbitrary βd

1 The first draft of this paper was finished in April 2007.
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nonbounding cycles of K representing a homology basis. The boundary group
and the cycle group of K are column spaces of the matrices ∂d+1 and Ẑd =
[∂d+1, Ĥd], respectively.

Cd(K0) corresponds to the set of vectors each of whose i-th entry is zero for
any simplex σi /∈ K0. We write ZK0

d (K) and BK0
d (K) as elements of Zd(K) and

Bd(K) whose i-th entries are zero. Consequently, we can write them as linear
combinations with certain constraints,

BK0
d (K) = {∂d+1γ | γ ∈ Zn(d+1)

2 , ∂id+1γ = 0 ∀σi /∈ K0}

ZK0
d (K) = {Ẑdγ | γ ∈ Zβd+n(d+1)

2 , Ẑi
dγ = 0 ∀σi /∈ K0}

where ∂id+1 and Ẑi
d are the i-th rows of the matrices ∂d+1 and Ẑd, respectively.

Here n(d+1) is the number of (d + 1)-simplices in K, and thus the number of
columns of ∂d+1.

5.2.2 Computing Dimensions by Computing Ranks of Sparse Matrices

With the following lemma, we can compute the dimensions of these two vector
spaces ZK0

d (K) and BK0
d (K) by matrix rank computations. The proof is based

on finite field linear algebra.

Lemma 7 For any matrix A =
[
A1
A2

]
, dim({Aγ | A2γ = 0}) = rank(A) −

rank(A2)

Proof. Denote P = spanA = {Aγ}. P1 = {Aγ | A2γ = 0} is its subspace.
The quotient vector space P/P1 is isomorphic to P2 = span(A2) = {A2γ}.
Therefore, we have

dim(P1) = dim(P )− dim(P/P1)

= dim(P )− dim(P2)

= rank(A)− rank(A2)

¤

It is trivial to see that the order of the rows in these matrices does not interfere
with the correctness of the theorem. The matrix A2 can be a certain subset of
the rows of A, not necessarily the last few rows. Therefore, we can compute
the dimensions of BK0

d (K) and ZK0
d (K) as

dim(BK0
d (K)) = rank(∂d+1)− rank(∂

K\K0

d+1 ), and

dim(ZK0
d (K)) = rank(Ẑd)− rank(Ẑ

K\K0

d ),
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where ∂
K\K0

d+1 and Ẑ
K\K0

d are the matrices formed by rows of ∂d+1 and Ẑd whose
corresponding simplices do not belong to K0.

Algorithm. The procedure Contain-Nonbounding-Cycle tests whether K0

carries any nonbounding cycle of K by testing whether dim(BK0
d (K)) and

dim(ZK0
d (K)) are different. Since columns in Ĥd correspond to βd nonbounding

cycles representing a homology basis, the ranks of Ẑd and ∂d+1 differ by βd.
K0 carries nonbounding cycles of K if and only if

rank(Ẑ
K\K0

d )− rank(∂
K\K0

d+1 ) 6= βd.

We use the algorithm of Wiedemann[22] for the rank computation.

In our algorithm, the boundary matrix ∂d+1 is given. The matrix Ĥd can be pre-
computed by running persistent homology algorithm once, with an arbitrary
filter function. Columns of Ĥd are simply columns of matrix V corresponding
to positive simplices paired with +∞.

5.3 Complexity of the Improved Algorithm

The algorithm Measure-All(K) runs the improved procedure Measure-Smallest
βd times, with the augmented complex K ′ as the input complex. Measure-
Smallest(K ′) applies the persistent homology algorithm on K ′ once to com-
pute Ĥd and r(p0). Next, for each vertex, it runs the rank computation on
submatrices of ∂d+1 and Ẑd = [∂d+1, Ĥd]. Denoting m as the time of two
rank computations, the algorithm takes O(βd(n

3 + nm)), as the size of K ′ is
O(n+ βd) = O(n).

To know m, we need the number of nonzero entries in matrices ∂d+1 and Ẑd, as
we are using a sparse matrix rank computation algorithm. Recall that in the
augmented complex K ′, we added O(βd) new (d + 1)-dimensional cells, each
of which has O(n) d-faces. Therefore, ∂d+1 has O(n+βd) = O(n) columns and
O(n(d + 2) + nβd) = O(nd + nβd) nonzero entries. Since Ĥd has βd columns
and O(nβd) nonzero entries, the size and number of nonzero entries of Ẑd are
asymptotically the same as ∂d+1.

Running Wiedemann’s rank computation on such matrices takesm = O(n log n(nd+
nβd+n log n)). If d and βd are small enough – that is, O(log n) or less – then we
have improved the Measure-All(K) to O(βd(n

3 + n3 log2 n)) = O(βdn
3 log2 n).

If we are dealing with an unusual situation in which d or βd is large – say Θ(n)
– then the matrices are not sparce. We would prefer to use the old algorithm,
with complexity O(βdn

4).
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6 Stability Result.

In this section, we prove that our measurement of homology is stable: small
changes of the geometry of the space imply small changes of our measurement.
We define a change of the geometry of the space as a change of the metric in
the space. We measure this change by measuring the L∞-norm difference of
geodesic distance functions before and after the change. To facilitate the proof,
we assume that during the change, the simplicial complex remains the same
except in terms of its edge weights, and thus, the discrete geodesic distances.
Formally, we quantify the change of the geometry as

ε = max
p∈vert(K)

|f 1
p − f 2

p |∞, (1)

where f 1
p and f 2

p are the discrete geodesic distance functions from p before and
after the change.

In this section, we prove the stability of our measurement by showing that (1)
for a single homology class, the size is stable; and (2) for the whole homology
group, although the optimal homology basis is not stable, the group structure
filtered by the size is stable. For convenience, we drop the dimension of the
pertinent homology, d, in notations.

6.1 A Single Class

For a single homology class, the size measure remains stable. Denote S1(h)
and S2(h) as the size of class h before and after the change (computed using
f 1
p and f 2

p , respectively). We have the following theorem.

Theorem 8 |S1(h)− S2(h)| ≤ ε, where ε is the upper bound of the geometry
change as defined in Equation (1).

Proof. Denote r1(p) and r2(p) as the radii of the smallest geodesic balls
carrying h computed using the geodesic distance f 1

p and f 2
p , respectively. We

show that for any specific vertex p, |r1(p) − r2(p)| ≤ ε. This leads to the
fact that S1(h) = minp∈vert(K) r

1(p) and S2(h) = minp∈vert(K) r
2(p) differ in no

more than ε.

For any simplex σ in the ball Br1(p)
p calculated using f 1

p , f
1
p (σ) ≤ r1(p), and

thus f 2
p (σ) ≤ f 1

p (σ) + ε ≤ r1(p) + ε. This means that the ball Br1(p)
p calculated

using f 1
p is a subcomplex of the ball Br1(p)+ε

p calculated using f 2
p , which thus

carries h. Therefore, according to the definition of r2(p), it is no greater than
r1(p) + ε. Similarly, r1(p) ≤ r2(p) + ε. ¤
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6.2 The Homology Group

Since the size of different classes can be very close, the optimal homology
basis is not stable. For example, in Figure 1 (Right), either {[z1], [z2], [z3]} or
{[z1], [z2], [z3] + [z1]} can be the optimal homology basis for little geometry
changing, because the sizes of [z3] and [z1] + [z3] are quite close. However,
there is still some stability property in the homology group structure if we
filter it with the class size. More specifically, the subgroup generated by small
homology classes remains stable. For example, in Figure 1 (Right), although
the optimal homology basis is unstable, the subgroup generated by the two
smaller classes in the optimal homology basis will always be the one generated
by [z1] and [z2].

We formalize this stability by defining the subgroup filtration of a topological
space and the distance between two such filtrations. A subgroup filtration is
a sequence of subgroups of the homology group generated by subsets of the
optimal homology basis filtered by the class size. A formal definition is as
follows.

Definition 9 (Subgroup Filtration) Given an optimal homology basisH =
{h1, h2, ..., hβ}, where we assume S(hi) ≤ S(hi+1), a subgroup filtration is a
sequence of subgroups of the homology group, X = {ψ0, ψ1, ψ2, ..., ψβ}, where
ψi = span(h1, h2, ..., hi) is the subgroup generated by the classes h1, h2, ..., hi.

Since here the homology group and all its subgroups are vector spaces, we use
the notation ψi = span(h1, h2, ..., hi) when we say h1, h2, ..., hi generates ψi.

Obviously, the subgroup filtration is a sequence of subgroups of H(K) with a
nested structure

∅ = ψ0 ⊂ ψ1 ⊂ · · · ⊂ ψβ = H(K).

For convenience, we denote the size of a subgroup, ψi, as the size of the largest
class in the optimal homology basis generating ψi, formally, S(ψi) = S(hi).
Please note that S(ψi) is not the size of the largest class in ψi.

Given two different sets of discrete geodesic distance functions (different ge-
ometries) of a same topological space, f 1

· and f 2
· , we have two different sub-

group filtrations X 1 and X 2. Next, we define their distance, which requires the
definition of the projection of one subgroup in one filtration onto the other
filtration.

Definition 10 (Projection) Given two subgroup filtrations of a same ho-
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mology group X 1 = {ψ1
0, ψ

1
1, ψ

1
2, ..., ψ

1
β} and X 2 = {ψ2

0, ψ
2
1, ψ

2
2, ..., ψ

2
β}, define

the projection of ψ1
i onto X 2 as the first subgroup in X 2 that carries ψ1

i ,
formally,

proj(ψ1
i ,X 2) = ψ2

j , s.t.j = min
ψ1

i⊆ψ
2
k

k.

Definition 11 (Distance) Define the distance between X 1 and X 2 as the
maximal difference between the sizes of any subgroup in X 1 or X 2 and its
projection onto the other filtration, formally,

dist(X 1,X 2) = max{max
i
|S1(ψ1

i )− S2(proj(ψ1
i ,X 2))|,max

i
|S2(ψ2

i )− S1(proj(ψ2
i ,X 1))|}.

Let X 1 and X 2 be the subgroup filtrations of the original space and the one
after the change. We can prove the following stability result.

Theorem 12

dist(X 1,X 2) ≤ ε = max
p∈vert(K)

|f 1
p − f 2

p |∞. (2)

Proof. Take a subgroup ψ1
i , generated by h1

1, h
1
2, . . . , h

1
i , the smallest i ele-

ments of the optimal homology basis H1, determined by f 1
· . For any j ∈ [1, i],

we have

S2(hj) ≤ S1(hj) + ε ≤ S1(ψ1
i ) + ε,

in which the first and the second inequalities are due to Theorem 8 and the
definition of ψ1

i , respectively. Therefore, we have

S2(proj(ψ1
i ,X 2)) ≤ max

j∈[1,i]
S2(hj) ≤ S1(ψ1

i ) + ε.

This is true for all i ∈ [1, β]. Similarly we can prove for any subgroup of X 2,
its distance from its projection onto X 1 is upper-bounded by ε. Equation (2)
is proved.

7 Conclusion

In this paper, we defined a size measure for homology classes. We provided an
algorithm to compute the optimal homology basis, namely, the basis whose
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elements have the minimal total size. Using finite field linear algebra, we im-
proved the complexity of our straightforward algorithm. Finally, we proved
that our size measure is stable in a natural sense.

Measure a given class. One interesting question is, instead of computing
the optimal basis, can we measure a single given class, [z]. We modify the pro-
cedure Measure-Smallest to achieve this. Again, we iterate through all vertices.
For each vertex p, we find the smallest geodesic ball centered at p carrying
[z], namely, Br(p)

p . We apply persistent homology on the complex using fp as
the filter function. We pick all the columns in V corresponding to positive
simplices that are paired with +∞, namely, z1, z2, · · · , zβd

, sorted according
to their order in the filtration. We find the smallest index i so that z is a linear
combination of boundaries and z1, z2, · · · , zi, namely,

z = [∂d+1, z1, z2, · · · , zi]γ (3)

The positive simplex corresponding to this smallest i gives us r(p). Replacing
∂d+1 with 0, we get a representative cycle of [z] carried byBr(p)

p , [0, z1, z2, · · · , zi]γ.
Iterating through every vertex p, we find the smallest ball carrying [z], Br(pmin)

pmin
,

and consequently the size and localized cycle of [z].
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