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Abstract

Interpreting an image as a function on a compact sub-
set of the Euclidean plane, we get its scale-space by diffu-
sion, spreading the image over the entire plane. This gener-
ates a 1-parameter family of functions alternatively defined
as convolutions with a progressively wider Gaussian ker-
nel. We prove that the corresponding 1-parameter family of
persistence diagrams have norms that go rapidly to zero as
time goes to infinity. This result rationalizes experimental
observations about scale-space. We hope this will lead to
targeted improvements of related computer vision methods.

1. Introduction
The work described in this paper is motivated by experi-

mental observations about scale-space, which is defined by
progressive diffusion of an image. Here, we think of the
image as a real-valued function on a compact subset of the
Euclidean plane, and we idealize the effect of diffusion by
convolving the function with an isotropic Gaussian kernel.
This generates a 1-parameter family of functions on the en-
tire R2, which we refer to as the scale-space of the image.
The construction is popular for the extraction of local to
global features [2, 17], which are useful for image registra-
tion, camera calibration, and object recognition [18], among
other computer vision tasks. Scale-spaces can be computed
for the image itself, or for derivatives including the Lapla-
cian and the determinant of the Hessian [19, 20]. Scale-
space has been defined by Iijima [10], and was rediscovered
by Witkin [27] and by Koenderink [11]; but see also [16].

In this paper, we study the evolution of the structural in-
formation contained in the functions of scale-space. As a
general tendency, diffusion washes out details, so we can
expect the number of critical points to decrease. However,
there are cases in which the critical points grow in num-
ber. Here we discuss one classic example [14, 16]. Making
the construction symmetric, we connect two mountains by
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a relatively narrow arched bridge that reaches its highest
point in the middle, so that the function has its sole max-
imum halfway between the mountains; see Figure 1, left.
Even a small amount of diffusion suffices to erode the arch,
while the two mountains remain relatively unaffected. We
thus get two maxima separated by a saddle; see Figure 1,
middle. Further diffusion also erodes the two mountains
and leaves one relatively shallow hill, so we are back to a
single maximum; see Figure 1, right. Drawing the trajec-
tories of the critical points in scale-space [12], we see the
initial maximum split into two maxima and a saddle which
later merge back into a single maximum.

Figure 1: From left to right: the collapse of the narrow bridge
connecting two mountains. The functions are illustrated by their
level sets and critical points (red dots).

While critical points are sometimes created by diffusion,
the experimental evidence suggests that this rarely happens.
Nevertheless, it is known that the creation of critical points
is a generic event; see Damon [6] and Rieger [23]. More
surprising than this creation is perhaps the possibility of
diffusing a finite number of point masses and getting more
maxima than point masses during an open time interval; see
[4]. The created critical points tend to be fragile, existing
only for a short time, but there are again counterexamples:
we can design our arched bridge to make the gorge that
opens up between the two mountains as deep as we like.

In this paper, we give a quantification of the diffusion
process, in terms of the persistent homology of the func-
tions, that explains the experimental evidence. In a nutshell,
we sweep out the function by gradually increasing the cut-
off value, and we observe topology changes of the subset
of points where the function value lies below the cut-off.
New features are acquired and old features are lost. Calling
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Figure 2: From left to right: an image of galaxies (from Flickr), the number of extrema as a function of the scale t, the norms of the
persistence diagram for p = 1, 3, 5, and same norms in log-log scale. In contrast to the number of extrema, we observe steadily decreasing
norms, whose logarithms are roughly linear in the logarithm of the scale. We have a proof of const/t as an upper bound only for p > 4.562.

these events births and deaths, we pair them up and define
the difference between their values as the persistence of the
feature. Consider the middle function in Figure 1 as an ex-
ample. As explained in Section 2, the global minimum is
paired with the global maximum and the saddle is paired
with the minor maximum. The persistence of the first pair
is the height of the main mountain, while the persistence
of the second pair is the depth of the gorge between the
mountains. Since the gorge can be as deep as we like, we
see that diffusion can create features with arbitrarily large
persistence. In contrast, its ability to affect the average per-
sistence is more limited.

To make this precise, we introduce the p-norm of the
persistence diagram, which takes the p-th root of the sum
of the p-th powers of all persistences, and we prove bounds
on this measure. We state our result for a compact subset
Ω of the Euclidean plane, leaving the formulation of the n-
dimensional result to the technical sections of this paper.
Let f : Ω → R be a function, and define ft : R2 → R by
convolving f with the isotropic Gaussian kernel with scale
t > 0. Then for every real number p > 1

2 (5 +
√

17), the
p-norm of the persistence diagram of ft satisfies

‖Dgm(ft)‖p ≤ const/t; (1)

see Figure 2. This upper bound is tight. We mention that
measuring the information contained in a smoothed func-
tion is not a new idea. Other such measures studied in the
literature include the generalized entropy [25], the method
noise [3], and the L2-norms of functions and residues [9].
The norm of the persistence diagram proposed in this paper
is different as it captures more of the high-level structural
information contained in a function. Persistence is related
to Morse theory [21], couched in the algebraic language of
homology, and blessed with efficient combinatorial as well
as algebraic algorithms [7].

Most directly related to our result is the work by Linde-
berg [15]. He considers n-dimensional images and proves,
both theoretically and experimentally, that for n = 1 and
for random noise, the expected number of critical points is
const/tn/2, conjecturing the same for n > 1. The restric-
tion of our Main Theorem to n = 1 gives a similar result

with weaker assumptions on the image, which extends to
higher dimensions as expected. It thus rationalizes an in-
tuition that has been used implicitly for decades. We in-
terpret our result as evidence that persistent homology can
gain insight into popular techniques, including the extrac-
tion of keypoints [20]. The additional insight may lead to
refinements of these techniques, e.g. by weighting the crit-
ical points with their persistence. In contrast to many other
studies of keypoint extraction, persistence has solid math-
ematical foundations, while being intuitive and applying to
real-valued functions of any dimension. It therefore gives
hope for extensions to global image structures [26] and fea-
tures in 3- and 4-dimensional images [13].

Outline. Section 2 introduces the necessary background
in analysis and algebraic topology. Section 3 establishes a
connection between the amplitude and the persistence dia-
gram of a function. Section 4 analyzes the convolutions of
a function and proves our main result. Section 5 concludes
the paper.

2. Background
In this section, we introduce the background we will

need in Sections 3 and 4. Beginning with topics in analysis
and algebraic topology, we conclude with persistent homol-
ogy, which forms a bridge between the two mathematical
disciplines.

Convolution and diffusion. The normal distribution plays
a special role in probability. The associated normal density
is the function gt : Rn → R defined by

gt(x) =
1

(2πt)
n
2
· e−

|x|2
2t , (2)

where |x| is the Euclidean norm of x ∈ Rn. In R1, this
density function has a symmetric, bell-shaped graph with
exponentially decaying tails at both sides. We refer to gt
as the Gaussian kernel with mean zero and scale t. It is a
mathematical model of many physically important phenom-
ena, including the stochastic location of a randomly mov-
ing particle with initial position at the origin. If instead of
a fixed position, we begin with an initial density function,
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f : Rn → R, we get the density at time t > 0 by convo-
lution with the Gaussian kernel: ft = f ∗ gt : Rn → R,
defined by

ft(x) =

∫
y∈Rn

f(y)gt(x− y) dy. (3)

An important property of the Gaussian kernel is its closure
under convolution: gs ∗gt = gs+t for all s, t > 0. In words:
instead of repeatedly convolving, we can convolve f once
with a Gaussian kernel of appropriately chosen larger scale.
Interpreting f as an initial distribution of heat, we get ft as
the distribution at time t > 0. The 1-parameter family of
functions ft is thus the solution to the heat equation:

∇2ft = const · ∂ft
∂t

, (4)

for some positive constant and initial condition f0 = f .
Here∇2 = ∂2

∂x2
1

+ . . .+ ∂2

∂x2
n

is the Laplace operator. If the
initial condition is a unit amount of heat at the origin, then
the solution to the heat equation is ft = gt.

Amplitudes and norms. Letting f : Rn → R be a
function, and B a subset of Rn, we define the amplitude of
f over B as the supremum difference between two values:

ampB(f) = sup
x,y∈B

|f(x)− f(y)|. (5)

Note that the amplitude is related to the infinity-norm of f ,
defined as ‖f |B‖∞ = supx∈B |f(x)|, but it is not the same.
We have ampB(f) ≤ 2‖f |B‖∞. Assuming f is smooth,
we can take its gradient, ∇f : Rn → Rn, and the magni-
tude of the gradient, |∇f | : Rn → R. The latter is a real-
valued function, so we can define its p-norm over B as the
p-th root of the integral of the p-th power of the magnitude:

‖∇f |B‖p =

(∫
x∈B
|∇f(x)|p dx

) 1
p

. (6)

Letting p grow, we get the infinity-norm of |∇f | in the limit
as ‖∇f |B‖∞ = supx∈B |∇f(x)|.

We will be interested in bounding the amplitude of f in
terms of the norm of the gradient, which is achieved by the
Sobolev inequalities. A version that is particularly useful
for our purposes is Theorem 1.4.2 in [24, page 22]:
Sobolev Inequality. Let f : Rn → R be smooth, B ⊆ Rn
a closed Euclidean ball, and p > n. Then

|f(x)− f(y)| ≤ const · vol(B)
1
n−

1
p ‖∇f |B‖p, (7)

for all points x, y ∈ B, where vol(B) is the n-dimensional
volume, and the constant factor depends on n and p.

It is not very difficult to adjust the proof to get the same
inequality (with a different constant) for a cube instead of a
Euclidean ball. This gives the following easy consequence
of the Sobolev Inequality.

Corollary. Let f : Rn → R be smooth, B ⊆ Rn an n-
dimensional cube, and p > n. Then

ampB(f) ≤ const · vol(B)
1
n−

1
p ‖∇f |B‖p, (8)

where the constant depends on n and p.

Homology. Given a topological space, we use homology
groups to characterize how the space is connected. There
are a number of different but equivalent theories to construct
these groups, and we will sketch the simplicial homology
since we will need triangulations to prove our main result.
Within each theory, we can use different coefficient groups,
leading to potentially different homology groups, but the
differences are well understood. There are many textbooks
in algebraic topology that cover homology groups in detail,
and we recommend [22] as one of them.

We now give a formal introduction of simplicial com-
plexes and the related homology theory. Recall that a j-
simplex in Rn is the convex hull of j + 1 affinely indepen-
dent points. A subset of i + 1 of the j + 1 points defines
an i-simplex that is a face of the j-simplex. A simplicial
complex is a finite collection of simplices, K, that is closed
under the face relation such that any two simplices are ei-
ther disjoint or they intersect in a common face. The un-
derlying space of K, denoted as |K|, is the union of the
simplices in K together with the topology inherited from
Rn. Note that |K| is a topological space, while K is a com-
binatorial representation of the same. A triangulation of
a topological space X is a simplicial complex K together
with a homeomorphism h : |K| → X. We will now con-
struct the homology groups of K and consider them as the
groups of X, which makes sense because different triangula-
tions of the same space give isomorphic groups. We get one
group for each dimension, j, which we denote as Hj(X).
Assuming the binary coefficient group, U = Z/2Z, with
addition modulo 2, each group is a vector space of the form
Hj(X) ' Uβj . We call βj = βj(X) the rank of Hj(X)
and the j-th Betti number of X. To construct the homology
group, we call a set c of j-simplices in K a j-chain. The
boundary of c is the set ∂c of (j − 1)-simplices that belong
to an odd number of j-simplices in c. A j-cycle is a j-chain
with empty boundary. Two j-cycles are homologous if their
symmetric difference is the boundary of a (j + 1)-chain.
Finally, a j-dimensional homology class is a maximal set
of homologous j-cycles, and Hj(X) is the group of these
classes, with addition defined by symmetric difference of
representative cycles.

To give an example, let Ω be a rectangular subset of R2,
and let f : Ω → R be the function whose level sets are
shown in Figure 1, middle. Let a be halfway between the
function value of the saddle and the shared function value of
the two maxima. Define X = f−1(−∞, a] and note that it is
a rectangle with two holes. It has two non-trivial homology
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groups, namely H0(X) ' U and H1(X) ' U2. The rank of
the former, β0(X) = 1, is the number of components, and
the rank of the latter, β1(X) = 2, is the number of holes
in the rectangle. It will often be convenient to suppress the
homological dimension, which we do by writing H(X) for
the direct sum of all homology groups of the space X.

Persistent homology. Instead of a single space, we now
assume a nested sequence of spaces. We point out that
this sequence is not related to scale-space (or not yet) but
is used to study a fixed function, e.g. by considering the
sequence of sublevel sets: Xa ⊆ Xb for a ≤ b, where
Xa = f−1(−∞, a] and similarly for b. Since every cy-
cle in Xa is also contained in Xb, we have a homomorphism
from H(Xa) to H(Xb), which is induced by the inclusion.
In other words, we have a 1-parameter family of homology
groups with homomorphisms connecting them from left to
right. We call this a filtration, and reading it from begin-
ning to end, we can observe when homology classes are
born and when they die. The key insight is the existence
of a canonical pairing between births and deaths, which is
used to define the persistence of a homology class as the
absolute difference between the values at its birth and at its
death. We refer the reader to [7] for further background on
persistent homology.

A convenient representation of the information in a fil-
tration is the persistence diagram, which we denote by
Dgm(f). We also assume that f is tame, by which we mean
that every sublevel set has finite rank homology groups,
and that there are only finitely many values at which the
group changes non-isomorphically. The persistence dia-
gram is a multiset of dots in the plane, in which each dot
represents a birth-death pair, marking the two events with
its two coordinates. To avoid the complications caused by
classes of X that are born but never die, we assume that
X = Sn (the n-dimensional Euclidean space, compactified
by adding a point at infinity). In this case, we have only
two unpaired births, namely the first component, which is
born at the global minimum, and the n-dimensional class,
which is born at the global maximum. Pairing up these
two events, we thus have finitely many dots, each with fi-
nite coordinates. Take the function shown in the middle
of Figure 1 as an example. We have four critical points:
a minimum at infinity, w, a saddle, x, and two maxima,
y and z. In the evolution of the sublevel set, we first
have the birth of a 0-dimensional class at f(w), second
the birth of a 1-dimensional class at f(x), third the death
of the 1-dimensional class at min{f(y), f(z)}, and finally
the birth of a 2-dimensional class at max{f(y), f(z)}. As-
suming f(y) < f(z), the two dots in the diagram are
(f(w), f(z)) and (f(x), f(y)). We note an ambiguity when
f(y) = f(z), but in this case, we get the same diagram for
the alternative pairing of w with y and x with z.

For each dot u ∈ Dgm(f), we write pers(u) for the

absolute difference between the two coordinates, and we
note that this is the persistence of every class represented
by this dot. Finally, we define the p-norm of the diagram as

‖Dgm(f)‖p =

 ∑
u∈Dgm(f)

pers(u)
p

 1
p

. (9)

As proved in [5], the p-norm is a stable measure provided X
is compact with polynomially growing mesh, f is Lipschitz,
and p > n. In this paper, we consider non-Lipschitz func-
tions on non-compact spaces, and we focus on convergence
properties as opposed to stability. Nevertheless, we will get
results which again hold for all p > n.

The rest of this paper focuses on the proof of the Main
Theorem. More experimental results and details of the al-
gorithm for computing persistence will be made available in
a technical report available at the author’s homepage. As a
proof of concept, we show experimental results for a single
image in Figure 2.

3. Regions and Cycles
Given a smooth function, we show how to subdivide the

domain so that the amplitude within each region is bounded.
Using the Corollary of the Sobolev Inequality, we bound the
number of regions in terms of the norm of the gradient.

Subdivision. Let f : Rn → R be a smooth function.
For a radius r ≥ 0, let δ(f, r) be the amplitude of f outside
the n-dimensional cube Br = [−r, r]n, that is, δ(f, r) =
ampB̄r

(f), where B̄r = Rn − Br. Fixing f , this defines
a non-increasing function in r. We say that f has a flat tail
if δ(f, r) goes to zero when r goes to infinity. We invert
the relationship by defining r(f, δ) as the infimum radius
r for which ampB̄r

(f) ≤ δ. To prepare the next step, we
fix a bound δ > 0, let r = r(f, δ), and consider the n-
dimensional cube Br. Writing 1

m = 1
n −

1
p , we define

F (Br) = vol(Br)
1
m · ‖∇f |Br

‖p, (10)

noting that const · F (Br) is equal to the right-hand side of
the Corollary of the Sobolev Inequality. When we subdivide
Br, the volume of a region is predictably smaller while the
norm of the gradient over the region may be as large as over
the entire Br. For example, if s = r

k , for k ≥ 1, then

F (Bs) = vol(Bs)
1
m · ‖∇f |Bs‖p (11)

≤ (2s)
n
m · ‖∇f |Br

‖p (12)
= F (Br)/k

n
m . (13)

The same inequality holds for every n-dimensional cube of
radius s = r

k inside Br. Assuming k is a positive integer,
we can therefore subdivide Br into kn cubes B of radius
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s = r
k , such that F (B) ≤ F (Br)/k

n
m for each cube. Our

goal is to choose k as small as possible under the constraint

F (B) ≤ δ/C0, (14)

where C0 is the constant in the Corollary of the Sobolev
Inequality. By (13), it suffices to choose k such that
F (Br)/k

n
m ≤ δ/C0. If F (Br) ≤ δ/C0 then we pick

k = 1 and we are done without subdividing. Else, X =

C
m
n

0 F (Br)
m
n /δ

m
n exceeds 1, and we pick k = 2bXc > X .

The number of n-dimensional cubes in the subdivision is
therefore

kn ≤ 2nCm0 · F (Br)
m/δm (15)

=
2nCm0
δm

· vol(Br) · ‖∇f |Br
‖pm (16)

≤ (4r)n (C0 · ‖∇f‖p/δ)m . (17)

Including the outside region, B̄r, we have generally at most
1 more region than stated on the right-hand side in (17), and
at most 2 more if k = 1. We therefore define

Mf (δ) = 2 + 4nr(f, δ)n
(
C0
‖∇f‖p
δ

)m
. (18)

Finally, we show that the amplitude of f within each region
is bounded. Using the Corollary of the Sobolev Inequality
stated in Section 2, we get

ampB(f) ≤ C0 · vol(Bs)
1
m · ‖∇f |B‖p (19)

= C0 · F (B), (20)

which, by (14), is at most δ for each cube B. We have
ampB̄r

(f) ≤ δ by definition of r = r(f, δ). It follows that
the amplitude is bounded from above by δ in every region
of the subdivision.

Flat tail compactness. Later in the proof of the Main The-
orem, we will use results that have only been established for
functions on compact domains. To finesse the difficulties
caused by the non-compactness of Rn, we transform f to
a function on the n-dimensional unit sphere, g : Sn → R.
Assuming f has a flat tail, we have the same limit no matter
in which direction we go to infinity: a = lim|x|→∞ f(x).
Let N = (0, . . . , 0, 1) be the north-pole of Sn ⊆ Rn+1,
write Rn for the n-dimensional plane spanned by the first n
coordinate axes, and let $ : Sn − {N} → Rn be the stere-
ographic projection that maps every point y ∈ Sn different
from N to

$(y) = N +
2(y −N)

|y −N |2
(21)

in Rn. Accordingly, define g($−1(x)) = f(x), for all
points x ∈ Rn, and complete the construction by defin-
ing g(N) = a. Clearly, g has compact support, and if f is
continuous with flat tail, then g is continuous.

We now prepare a connection between the norm of the
gradient of f and the ranks of the homology groups of the
sublevel sets of f . For this purpose, we use a triangulation
of Sn, which we recall is a simplicial complex K together
with a homeomorphism h : |K| → Sn. For every δ > 0,
we are interested in a triangulation with as few simplices as
possible such that the amplitude of f restricted to the image
of every simplex, $(h(ξ)), is bounded from above by δ.

Subdivision Lemma. Let f : Rn → R be smooth with
flat tail. Then for every p > n and every δ > 0, there is a
triangulation of Sn with at most 2nn!Mf (δ) simplices, such
that the amplitude of f within the image of each simplex is
at most δ.

The extra factor, 2nn!, allows for the decomposition of
every n-dimensional cube into n! n-simplices, see e.g. [8],
and for counting all 2n faces of each n-simplex.

Counting cycles. The reason for our interest in the number
of simplices needed to guarantee a bound on the amplitude
within each simplex is its connection to the number of high-
persistence dots in the persistence diagram of f . Recall
that Dgm(f) records the events (births and deaths, and their
correspondence) during a sweep through the sublevel sets,
f−1(−∞, a], in which a goes from −∞ to∞. To develop
an intuition, let u, v ∈ Dgm(f) be two dots representing i-
dimensional homology classes of persistence larger than δ.
Because of the small amplitude within each (i+1)-simplex,
each of these classes has a representative in the i-skeleton
of the triangulation. Having the same representation in the
i-skeleton would contradict both having large persistence,
but if they are different then we are limited to the classes
generated by the i-skeleton. This suggests that the number
of simplices gives an upper bound on the number of dots:

Persistent Cycle Lemma. Let f : Rn → R be tame and
with flat tail. Then the number of dots in Dgm(f) with per-
sistence larger than δ is at most 2nn!Mf (δ).

A formal proof of this lemma can be found in [5]. More
specifically, the lemma with the same name in this reference
is formulated in terms of an upper bound on the Lipschitz
constant of the function f . This difference is not essential
and the proof extends virtually unchanged. Similar to [5],
we need an integrated version of the bound. To that end, we
consider the p-norm of the diagram after removing all dots
with persistence at most δ:

‖Dgm(f, δ)‖p =

 ∑
pers(u)>δ

pers(u)
p

 1
p

, (22)

Clearly, ‖Dgm(f, 0)‖p = ‖Dgm(f)‖p, the p-norm of the
diagram as defined in Section 2. As proved in [5], we can
get a bound on ‖Dgm(f, δ)‖p by integrating the bound pro-
vided by the Persistent Cycle Lemma:
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Diagram Norm Lemma. Let f : Rn → R be tame and
with flat tail. Then ‖Dgm(f, δ)‖p is at most

const ·

[
δpMf (δ) +

∫ amp(f)

ε=δ

Mf (ε)εp−1 dε

] 1
p

,

for every δ > 0.

We delay the computation of the integral until later, when
we will know how Mf (ε) depends on ε. We will see that
this dependence is only polynomial so that it will be easy
to evaluate the integral. Letting δ go to zero, we will then
obtain a bound on the p-norm of the diagram.

4. Convergence
In this section, we prove the main result of this paper in

two steps, first establishing how fast the gradient diffuses to
zero and second how the norm of the persistence diagram
follows this trend.

Two results on Gaussian kernels. We begin with two
exercises in the analysis of a Gaussian kernel, which we will
use to prove properties of general functions with compact
support. Specifically, we consider gt : Rn → R and the
magnitude of its gradient, defined by

|∇gt(x)| =
|x|
t
· gt(x). (23)

It is easy to compute the maximum value as a function of
t, which is gt(0) = 1/(2πt)

n
2 . It decreases monotonically

with increasing t. This is different from the value at a point
x 6= 0, where it first increases to a maximum and then in-
creases. Determining the maximum value at x thus amounts
to computing when the derivative with respect to t vanishes.
We get

∂gt(x)

∂t
=

[
|x|2

2t2
− n

2t

]
gt(x), (24)

which vanishes at t0 = |x|2/n. To see that this indeed
corresponds to a maximum, we may compute the second
derivative and verify that it is negative at t = t0. We get the
upper bound by plugging t0 into the formula for gt(x):
First Kernel Lemma. Let gt be the Gaussian kernel with

t > 0 in Rn. Then gt(x) ≤
(

n

2eπ|x|2

)n
2

for any |x| > 0.

Second, we are interested in the p-norm of the gradient.
It is intuitively clear that this norm will go to zero when t
goes to infinity, but it will be important to determine how
fast it vanishes. Computing the p-norm of |∇gt(x)| reduces
to a standard exercise in integration, and results can be
found in standard mathematical handbooks, including [1].
Second Kernel Lemma. Let gt be the Gaussian kernel with
t > 0 in Rn, and p ≥ 1. Then ‖∇gt‖p ≤ const/t

n+1
2 −

n
2p .

For example, the 1-norm goes to zero like t
1
2 , which does

not depend on n. For p > 1, the convergence is faster in
higher than in lower dimensions.

Quantifying flatness. Let Ω be a compact subset of Rn,
f : Ω → R a function, and f0 : Rn → R defined by
f0(x) = f(x) if x ∈ Ω and f0(x) = 0 otherwise. We are
interested in the behavior of the convolution, ft = f0 ∗ gt,
which is defined by

ft(x) =

∫
y∈Rn

f0(y)gt(x− y) dy. (25)

It will be convenient to side-step the definition of f0 and
write ft = f ∗ gt for t ≥ 0. When f is the Dirac delta func-
tion, with unit mass concentrated at the origin, then ft = gt
for all t > 0. Hence, its amplitude is equal to the maxi-
mum value: amp(ft) = 1/(2πt)

n
2 . Even for general f , the

amplitude cannot be much larger than that, which we prove
using amp(ft) ≤ 2‖ft‖∞. The maximum absolute value is

|ft(x)| ≤
∫
y∈Ω

|f(y)| · 1

(2πt)
n
2
· e−

|x−y|2
2t dy, (26)

for all t > 0. Noting that the exponential term is at most 1,
we get the desired upper bound.
Amplitude Lemma. Let Ω be a compact subset of Rn and
f : Ω → R. Then the amplitude of ft : Rn → R satisfies
amp(ft) ≤ const/t

n
2 , for all t > 0.

The constant in this bound is 2‖f‖1/(2π)
n
2 . We are also

interested in the amplitude of ft outside a sufficiently large
cube. Specifically, we use the First Kernel Lemma to bound
how fast the radius r(ft, δ) grows when δ goes to zero. We
content ourselves with a bound that applies uniformly, for
all t. To state the result, we assume a radius r0 large enough
so that the cube [−r0, r0]n contains Ω ⊆ Rn, and we define

R(δ) = r0 +

√
n

2eπ
·
(

2‖f‖1
δ

) 1
n

. (27)

Furthermore, we write BR(δ) = [−R(δ), R(δ)]n for the
cube this radius defines, as before.
Flat Tail Bound. Let f : Ω → R be with compact sup-
port Ω ⊆ [−r0, r0]n. Then the amplitude of ft : Rn → R
outside BR(δ) is at most δ uniformly for all t ≥ 0.

PROOF. Let x be a point outside BR(δ) and note that it is
further than R(δ) − r0 from every point in Ω. By the First
Kernel Lemma, the value of gt at a point y with distance
R(δ)− r0 from the origin is at most

Xδ =

(
n

2eπ(R(δ)− r0)2

)n
2

. (28)

We can therefore bound ft(x) by concentrating all the mass
at a point at distance R(δ)− r0 from x. More formally, we
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have

|ft(x)| ≤
∫
y∈Ω

|f(y)|gt(x− y) dy (29)

≤ Xδ · ‖f‖1, (30)

where the 1-norm is finite because Ω is compact. Solving
for Xδ‖f‖1 = δ/2, we get R(δ) as defined in (27). The
claim follows because |ft(x)| ≤ δ/2 for all points outside
BR(δ) implies that the amplitude of ft restricted to B̄R(δ) is
at most δ.

We may read (27) as saying that there is a constant that
depends on f and n such that R(δ) = const · [1 + 1/δ

1
n ].

Hence, the infimum radius r(ft, δ), which is bounded from
above by R(δ), grows at most like the n-th root of 1/δ.

Extending to compact support. Using the Second Kernel
Lemma, it is not too difficult to bound the norm of the gra-
dient of a more general diffusing function. A crucial tool in
this analysis is the Hölder Inequality, which we now recall.
Given two functions Φ,Ψ : Rn → R, it says that∫

Φ(x)Ψ(x) dx ≤
(∫

Φ(x)p dx

) 1
p
(∫

Ψ(x)q dx

) 1
q

,

whenever 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. To illustrate its
use, suppose that Ψ has compact support Ω ⊆ Rn and set
Φ(x) = 1 for all x ∈ Ω to get∫

x∈Ω

Ψ(x)a dx ≤ vol(Ω)
1
p

(∫
x∈Ω

Ψ(x)aq dx

) 1
q

.

Assuming vol(Ω) = 1, we get ‖Ψ‖a ≤ ‖Ψ‖aq for all q ≥ 1.
In words, the norms are non-decreasing for non-decreasing
index. We are now ready to relate the norm of a general
diffusing function with the norm of the gradient of the dif-
fusing Gaussian kernel.
Compact Gradient Lemma. Let Ω ⊆ Rn be compact, f :
Ω → R a function, ft = f ∗ gt for t > 0, and p ≥ 1. Then
‖∇ft‖p ≤ const · ‖∇gt‖p.

PROOF. In a first step, we write the gradient of ft in terms of
the gradient of the Gaussian kernel and get an upper bound
by integrating magnitudes:

|∇ft(x)| ≤
∫
y∈Ω

|f(y)| · |∇gt(x− y)|dy (31)

≤ ‖f |Ω‖q
(∫

y∈Ω

|∇gt(x− y)|p dy

) 1
p

(32)

where we apply the Hölder Inequality with 1
q + 1

p = 1.
Note that ‖f |Ω‖q is no more than the q-norm of f , while
the second integral is not the p-norm of |∇gt|. Indeed, the
size of the second integral depends on the relative position

of x and Ω. In the second step, we bound the p-norm of
|∇ft| by integrating the above bound on the magnitude:

‖∇ft‖p =

(∫
x∈Rn

|∇ft(x)|p dx

) 1
p

(33)

= ‖f‖q
(∫

Rn

∫
Ω

|∇gt(x− y)|p dy dx

) 1
p

(34)

= ‖f‖q
(∫

y∈Ω

‖∇gt‖pp dx

) 1
p

, (35)

where we get the last line by exchanging the integrals. The
claimed inequality follows by noticing that the integral is
equal to vol(Ω)‖∇gt‖pp. Simplifying the resulting inequal-
ity by absorbing ‖f‖q and the p-th root of vol(Ω) into the
constant gives the claimed inequality.

Bounding the persistence. We are now ready to prove
the main result of this paper, which states that the p-norm
of the persistence diagram goes to zero like 1/t

n
2 .

Main Theorem. Let Ω ⊆ Rn be compact and f : Ω → R
a function such that ft = f ∗ gt is tame for all t ≥ 0. Then

‖Dgm(ft)‖p ≤ const/t
n
2 , (36)

for all p > 1
2 (2n+ 1 +

√
4n2 + 1), and the exponent on the

right hand side of the inequality is best possible.

PROOF. The tightness of the bound follows from the exis-
tence of f with amp(ft) = const/t

n
2 . We thus get a dot

whose persistence is this amplitude. Taking the p-th root of
the p-th power implies the claim.

To prove the upper bound, we simplify the relevant in-
equalities by focusing on the terms that depend on δ or on
t. For example, for (18) and (27), we get

Mft(δ) ≤ const ·
[
1 +

r(ft, δ)
n ·Xp

δm

]
, (37)

R(δ) ≤ const ·
[
1 +

1

δ
1
n

]
. (38)

where Xp = ‖∇ft‖pm. By the Flat Tail Bound, we have
r(ft, δ) ≤ R(δ), so we can plug (38) into (37) to get

Mft(δ) ≤ const ·
[
1 +

Xp

δ1+m

]
. (39)

Plugging (39) into the Diagram Norm Lemma gives a first
term δp + δ`Xp within the outer pair of brackets, where
` = p − 1 − m = p − 1 − np

p−n . The lower bound on p
given in the statement implies ` > 0, so the first term can
be neglected as δ goes to zero. The second term within the
brackets is

X ≤ const ·
∫ amp(ft)

ε=δ

(
εp−1 +Xpε

`−1
)

dε. (40)
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Substituting ‖∇gt‖p for ‖∇ft‖p using the Compact Gradi-
ent Lemma and applying the Second Kernel Lemma, we get
Xp ≤ const/tm( n+1

2 −
n
2p ). Plugging this bound into (40)

and integrating gives

X ≤ const ·

[
amp(ft)

p
+

amp(ft)
`

tm( n+1
2 −

n
2p )

]
. (41)

Using amp(ft) ≤ const/t
n
2 from the Amplitude Lemma,

we note that the first term in (41) is dominated by the sec-
ond term. We therefore get X ≤ const/t

`n
2 +m( n+1

2 −
n
2p ).

Substituting p − 1 − m for ` and pn
p−n for m finally gives

X ≤ const/t
np
2 , and taking the p-th root gives the claimed

inequality in (36).

5. Discussion
The main contribution of this paper is a bound on the

norm of the persistence diagram of a diffusing function on
Rn. Its proof uses a Sobolev inequality to establish a con-
nection between the gradient and the amplitude of the func-
tion. Indeed, we may think of the Sobolev inequality as the
technical means needed to finesse the difficulties caused by
the non-compactness of Euclidean spaces.

We close by formulating questions related to the work
presented in this paper. Can the assumptions under which
our bounds hold be weakened? In particular, does the up-
per bound hold for values of p that are smaller than allowed
in the Main Theorem? How do the upper bounds extend
to non-Euclidean spaces? What are the characteristics of
spaces with particularly fast or particularly slowly vanish-
ing norm of the persistence? Can the analysis of the contin-
uous case presented in this paper be extended to discretized
versions of convolution, as considered in [15]?
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