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Mustafa Gökhan Uzunbaş?, Chao Chen, and Dimitris Metaxsas

CBIM, Rutgers University, Piscataway, NJ, USA

Abstract. We present a new algorithm for automatic and interactive
segmentation of neuron structures from electron microscopy (EM) im-
ages. Our method selects a collection of nodes from the watershed merg-
ing tree as the proposed segmentation. This is achieved by building a
conditional random field (CRF) whose underlying graph is the merging
tree. The maximum a posteriori (MAP) prediction of the CRF is the
output segmentation. Our algorithm outperforms state-of-the-art meth-
ods. Both the inference and the training are very efficient as the graph
is tree-structured. Furthermore, we develop an interactive segmentation
framework which selects uncertain regions for a user to proofread. The
uncertainty is measured by the marginals of the graphical model. Based
on user corrections, our framework modifies the merging tree and thus
improves the segmentation globally.

Keywords: Conditional Random Field, Watershed, EM Segmentation,
User Interaction

1 Introduction

The watershed transform [9] partitions a given image into segments by simulat-
ing a water flooding of the landscape of a given scalar function, e.g. the gradient
magnitude or the likelihood of each pixel being the boundary (Fig. 1(c)). In order
to mitigate the over-segmentation effect, one often merges neighboring segments
when the minimal function value along the boundary between them (called the
saliency) is below certain threshold. Considering all saliency thresholds, a hi-
erarchical merging tree is constructed [9] in which each leaf node is a segment
of the original watershed and each non-leaf node is a merged segment. A height
function can be assigned to each node according to the minimal saliency thresh-
old at which it disappears (is merged with others). The watershed segmentation
at any given threshold can be computed by cutting all tree nodes below the
threshold and taking all leaf nodes of the remaining tree. In Fig. 1(d) and 1(e),
we show the original watershed result and a thresholded one.

The watershed method and its variations have been used on EM images
[4,2,8]. However, running watershed using a certain threshold usually leads to
accurate segments at certain area yet over/under-segmentation at other areas
(see Fig. 1(d) and 1(e)). In this paper, we propose a CRF-based learning algo-
rithm which finds a segmentation of higher quality by selecting different saliency
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Fig. 1. (a) The EM image patch; (b) the ground truth; (c) the boundary likelihood map
(dark pixels have high values); (d) the watershed segmentation and its tree, built using
the boundary likelihood map as the landscape function; (e) the watershed segmentation
with a higher threshold; (f) the result of our algorithm.

thresholds at different areas of the image. Essentially, our algorithm learns from
training data how to cut a hierarchical tree adaptively to achieve a better result.
See Figure 1(f) for an example of our result. We train our algorithm to construct
a tree-structured graphical model for each image and its hierarchical tree. The
(MAP) probability of this graphical model gives a segmentation. Our method
outperforms state-of-the-art in automatic segmentation of high resolution 2D
(ssTEM) [3] and 3D (FIBSEM) [7] EM images.

Our CRF model leads to a novel interactive segmentation framework. Con-
nectomics requires extremely accurate partitioning of EM images into distinct
neuron cells. In order to achieve a satisfying quality, human experts have to
proofread, namely, to manually correct the segmentation results [12,4]. It is a
difficult and tedious task due to the huge data size (5003 voxels and more than
1000 cells). Fig. 4(a) shows what a human expert is facing in proofreading. Our
interactive interface only highlights a small set of locations for human experts
to verify, namely, the locations at which our graphical model has very low con-
fidence. When a user fixes a mistake at one of these locations, our framework
modifies the merging tree accordingly and recomputes the segmentation. The
improvement to the segmentation is global. Our experiments show that under
the new framework, within fifteen user inputs, the segmentation is improved to
the optimal quality, much faster than classical user interaction frameworks.

Related work. The closest works to us are [2,8], which also start with an
initial watershed segmentation. The problem is formulated as a labeling problem
of boundaries under certain topological constraints. The problem is solved using
multicut integer linear programming. Another recent work [10] which also uses
an initial watershed segmentation and performs agglomeration, learns how to
merge watershed segments via active learning methods.
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Kiran et al . [11] compute cuts of the hierarchical tree optimizing certain
predefined energy. However, their energy is not learned in a supervised fashion
as we did. Turaga et al . [13] learn to construct a hierarchical tree so that the
watershed cut at a certain threshold produces a high quality segmentation. There
are many other learning based methods for Connectomics segmentation task. See
[6] and references therein.

2 Background

Suppose we are given a graph, e.g. a hierarchical merging tree. Denote by V and
E ⊆ V × V the set of nodes and the set of edges respectively. Each node can
take a label from a label set L. We call each label configuration of all nodes a
labeling. Denote by Y = LV the space of all labelings. Given an observation x and
a parameter vector w, the conditional probability of a labeling y is P (y|x,w) =
exp(−E(y|x,w) − logZ(x,w)), where Z(x,w) =

∑
y∈Y exp(−E(y|x,w)) is the

partition function. The energy is often defined as the negative inner product
E(y|x,w) = −〈w, φ(x, y)〉, in which φ(x, y) is the concatenation of features of
all nodes and edges. Note that the feature vector also depends on y.

In prediction, one computes the maximum a posteriori (MAP),

argmaxy P (y|x,w) = argminy E(y|x,w). (1)

It is also very useful to compute the marginals, P (yi = `|x,w) =
∑

y:yi=` P (y|x,w).
Since our graph is tree-structured, computing MAP and marginals can be solved
exactly and efficiently using dynamic programming algorithms. For more general
graphs, the inference tasks are NP-hard and have to be solved approximately,
e.g. using loopy belief propagation.

We train the parameter vector w from a given set of training data {(xn, yn)},
n = 1, . . . , N . This can be achieved by minimizing the convex loss function
loss(w) = ‖w‖2 + c

∑N
n=1 [logZ(xn, w)− 〈w, φ(xn, yn)〉]. We can find the opti-

mal w efficiently using gradient descent. The gradient can be computed effi-
ciently as long as the marginals can be computed efficiently. We use the UGM
package by Mark Schmidt for the training 1.

Factorization and labeling constraints. Assuming the Markov proper-
ties, the energy E can be factorized into the summation of unary potentials and
pairwise potentials, E(y|x,w) =

∑
(i,i′)∈E Ei,i′(yi, yi′ |x,w) +

∑
i∈V Ei(yi|x,w).

For a node/edge, one can forbid a certain label/label combination by forcing the
corresponding potential to be infinite. Thus we can compute MAP and marginals
only over the set of feasible labelings Y ′ ⊆ Y. This makes it possible to do train-
ing and inference only over Y ′, as we will do in this paper.

3 Computing Tree-Derived Segmentation

For any given image, we construct a watershed merging tree by running on
a boundary likelihood map, namely, the likelihood of whether a pixel belong-
ing to the boundaries between neuron cells (Figure 1(c)). Next, we construct
a tree-structured graphical model whose underlying graph is the same as the

1 http://www.di.ens.fr/~mschmidt/Software/UGM.html

http://www.di.ens.fr/~mschmidt/Software/UGM.html
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hierarchical tree. The problem of computing the optimal segmentation is trans-
formed into the problem of computing the optimal labeling of this graphical
model (Equation (1)). In order to achieve the transformation, we need to build
a correspondence between segmentations and labelings.

The correspondence between segmentations and labelings. Denote
by P = {p1, . . . , pM} the set of all regions corresponding to the leaf nodes of the
tree. We call these regions the superpixels. A segmentation is a decomposition of
the set of superpixels into a disjoint set of segments. Formally, a segmentation
S = {s1, . . . , sm | si ⊆ P,∀i;

⋃
· mi=1 si = P}.

Denote by S the space of all possible segmentations. For a given image I,
we would like to find the most probable segmentation argmaxS∈S P (S|I), with
a suitably defined posterior probability P (S|I). Since S is too large to search
through, we restrict the solution space to a smaller subset. Given a hierarchical
tree, T , a segmentation S is T -derived if and only if each segment si ∈ S is
a node of T . We call such segmentations tree-derived and our algorithm search
through the space of all T -derived segmentations, denoted by ST ⊆ S. The corre-
spondence between tree-derived segmentations and the labelings of T is provided
as follows. Let the label set L = {−1, 0, 1}, represent whether each tree node is
an under-segment, a segment or an over-segment. An under-segment node is the
ascendant of a set of segment nodes. An over-segment node is the descendant
of a segment node. For each labeling y, we take the set of zero-labeled nodes as
the corresponding segmentation. In Figure 1(f), the tree represents a labeling.
Red, blue and dark colors correspond to −1, 0 and +1 labels respectively. The
corresponding segmentation is shown in the top row.

We are only interested in labelings that derive legit segmentations. Therefore
we enforce certain restrictions on the labelings. For a labeling y and a node v,
let Γv(y) be the sequence of labels along the path from v to the root.
Theorem 1 There is an one-to-one correspondence between ST and the set of
labelings YT , such that for any leaf node v, (1) Γv(y) is monotonically non-
increasing; (2) The zero label appears exactly once in Γv(y); (3) The first label
(label of v) cannot be −1 and the last label (label of the root node) cannot be +1.

We defer the proof to the supplemental material.
We call labelings within YT segmentation labelings. Conditions in Theorem

1 can be translated into restrictions on labels of nodes and edges. In particular,
a labeling y is a segmentation labeling if and only if (1) the root has label
yroot ∈ {−1, 0}; (2) any leaf node, v, has label yv ∈ {0, 1}; (3) for any child-
parent pair, (c, p), yc ≥ yp ≥ yc − 1; (4) if yp = yc, yc 6= 0.

Prediction and training. For any given image and hierarchical tree, we
construct a graphical model. 2 Let the posterior probability of a tree-derived
segmentation S ∈ ST be P (S|I) = P (yS |I, w), where yS is the corresponding
segmentation labeling of S. Recall that we can enforce all aforementioned label
constraints by setting certain potentials to infinity. Therefore, we can restrict
the set of feasible solutions of the graphical model to be YT and compute the
MAP, argmaxy∈YT

P (y|I, w). The corresponding segmentation is the predicted

2 See the supplemental material for details of extracting features φ(x, y) in Eq. 1.
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Fig. 2. (a)The flowchart of the interactive framework; (b) a tree (nodes on the curved
paths are not shown for clarity); (c) b is labeled merged; (d) b is labeled split.

segmentation. At the training stage, for each data, we construct the graphical
model similarly so that the marginals are computed within YT . It remains to
show how to compute the ground truth labeling for each training data.

Computing the optimal tree-derived segmentation. For each training
data, we are given a ground truth segmentation Ŝ, which may not be tree-
derived. In order to find a ground truth labeling of this data, we find the tree-
derived segmentation that best approximates Ŝ, S∗ = argmaxS∈ST score(S, Ŝ).
For EM images, there are two popular score functions, the random index and
the variation of information. Notice that both functions can be decomposed
into a summation of scores of elements of S, score(S) =

∑
si∈S f(si). Based

on this observation, we provide a polynomial algorithm to compute S∗ using
standard dynamic programing techniques. See the supplemental material for the
pseudocode.

4 Interactive Segmentation
Our interactive algorithm works as follows. For a given test image, we compute
an automatic segmentation using the algorithm presented in the previous section.
Based on marginals of the graphical model, we suggest the user a few locations
to proofread. When a user finds a mistake in the segmentation, he/she clicks and
corrects it. The boundaries that have been corrected would not be highlighted
during the remaining iterations. We modify the merging tree accordingly and
recompute the segmentation on the modified tree. This process is repeated until
the user is satisfied. Recall that to construct a graphical model, we need a pa-
rameter vector w. Throughout the user interaction, we use the same w which is
learned in the training stage. See Figure 2(a) for the flowchart.

Boundaries and their marginals. The basic elements for a user to handle
are boundaries between superpixels. Recall superpixels form a bottom layer wa-
tershed segmentation. We collect the set of all boundaries (curves for 2D images
and surface patches for 3D images). For a given segmentation, we say a boundary
is labeled merged if the two adjacent superpixels belong to a same segment. Oth-
erwise, it is labeled split. In other words, the boundary will appear (not appear)
in the segmentation if it is labeled split (merged). The task of segmentation is
equivalent to finding an optimal split/merged labeling to all the boundaries. Our
CRF generates marginals for nodes of the tree. However, we can easily translate
node marginals into marginals of whether each boundary being split or merged.
For a given boundary b and its two adjacent superpixels, p1, p2, we find the least
common ancestor of the leaf nodes containing p1 and p2. We call this node, v,
the containing node of b, because b is in the interior of v and all its ancestors
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Fig. 3. (a) Interaction Simulation; (b) 3D Result.

(Fig. 2(b)). The boundary b is split if and only if v is an under-segment, i.e.
has label −1. Therefore, the probability of b being split is equal to the marginal
P (yv = −1|x,w). At each iteration of the segmentation, we show the predicted
segmentation and highlight the boundaries that we have low confidence of being
either merged or split. This gives a user a small number of options to proofread
(see Fig. 4(a)). After the user corrected a boundary, the system will update the
tree accordingly and present the low marginal boundaries again.

Modifying trees. We conclude this section by explaining how to update
the tree according to user inputs. When a user specifies a boundary between two
superpixels to be merged, we merge the paths from the two leaf nodes containing
the two superpixels to their common ancestor node into a single path. When
user specifies a boundary to be split, we split the path from v to the root into
two paths, nodes along the original path are assigned to either of the two new
paths, depending on the situation. Also we enforce an extra constraint that the
raised containing node could only have label −1. These operations will ensure
the boundary is merged/split in any tree-derived segmentation of the modified
tree. In Fig. 2, we illustrate the two operations on a same tree.

5 Experiments
2D experiments. We applied our method to neuron EM images from the ISBI
2012 EM image segmentation challenge [3]. The data contains 30 2D sections
of ssTEM images, each of which has 512 × 512 pixels. We used the boundary
likelihood map from [5]. We submitted our result on test data to the challenge
website and our method achieved the 2nd place overall in the competition, with
an adjusted Rand Index Error of 0.023, Warping Error 0.0008 and Pixel Error
0.11. [1]. Note that our group name is ”optree-idsia”. The training took 167
seconds and the MAP computation during testing per image was 0.05 seconds.

To demonstrate the necessity of all structural constraints that we enforce in
our algorithm, we ran a holistic experiment. We compared our method with three
baseline approaches: watersheds (WS); node classifier (NC); unconstrained CRF
(UNC). WS is the the classical watershed using the best threshold. In NC we
trained a random forest classifier to predict node labels. In UNC, we used CRF
on trees without constraints defined in Theorem 1. We used post-processing to
ensure the final results of these methods are legit segmentations. Note that NC
and UNC are both supervised training methods, like ours.
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WS NC UNC Optree Optimal
ARI 0.05 0.14 0.10 0.023 0.015

In the table, Optree outperforms all
baselines in the Adjusted Rand Index
(ARI). We also present the optimal tree-derived segmentation result (Optimal)
for reference, which is achieved when the ground truth is known. This is the the-
oretical upper-bound of our tree-derived segmentations. We observe that UNC
outperforms NC, justifying the significance of the tree structure in the model.

3D experiments. We applied our method to a 500×500×500 3D EM image
from [7]. We used the boundary likelihood map from “Ilastik” [12]. To reduce the
watershed tree size, we removed all nodes with height less than 0.05. We divided
the initial volume into 8 250x250x250 sub-volumes. We run experiments for 8
times. Each time we use one sub-volume for training and the rest for testing.
Training took 465 seconds and MAP computation took 0.9 seconds on average.
The average Rand Index score (one minus the Rand Index Error) is 0.9837. Our
method performs better than state-of-the-art [8,2]. The optimal score of tree-
derived segmentations (Optimal) is 0.9923. There is still room for improvement
over the optree segmentation result. In the next section, we show the result can
be improved to the optimal via user interactions, as explained in Section 4.

Interactive experiments. Our interactive system suggests a few bound-
aries for users to proofread at each iteration. Users judge by observation whether
a boundary is mislabeled and correct it. We run experiments to show how this
method could improve the efficiency of proofreading. We simulate a user inter-
action process on a particular 2503 sub-volume on which our automatic method
has the worst score. We start from the automatic algorithm result and correct
mislabeled boundaries iteratively. At each iteration, the simulated user (robot)
selects one mislabeled boundary based on certain strategy. The merging tree is
modified accordingly. We implemented two strategies (1) always select the mis-
labeled boundary with the least confidence (least marginal); (2) randomly select
a mislabeled boundary. In Figure 3(a), correcting low-marginal boundaries (red
curve) clearly improves the results much faster than correcting randomly selected
boundaries (blue curve). The former takes about 14 iterations to reach the ac-
curacy > 98.7 while the latter takes 39 iterations to reach the same accuracy.
We also show the optimal result (black curve) of tree-derived segmentation as a
theoretical upper bound.

We illustrate how one user input can improve the segmentation globally. In
Figure 4(a), a user has to verify all colored boundaries. However, in our system,
she only needs to pay attention to boundaries with low marginals (yellow and
cyan). Boundaries of yellow (resp. cyan) color are labeled split (resp. merged).
After a selected boundary (yellow arrow) is corrected, many other boundaries
are automatically corrected (Figure 4(b), 4(c) and 4(d)). Our interactive seg-
mentation framework is very efficient. In average, each iteration takes around 1.9
second. This includes modifying the tree and recomputing MAP and marginals.

6 Conclusion

This paper presents a CRF-based algorithm for neuron segmentation. The tree-
structured graphical model allows us to compute accurate segmentation of 5003

dataset within a second. Furthermore, we develop an interactive segmentation
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Fig. 4. (a): boundaries a user has to proofread; (b): our system only shows boundaries
with low marginals (yellow if labeled split, cyan if labeled merged); (c): before user
input; (b): after user input, many boundaries are fixed.

framework that takes advantage of the marginals of the graphical model. The
new framework improves the segmentation to the optimal quality within a small
number of user inputs.
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