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Abstract
This paper studies the following problem: given samples from a high dimensional
discrete distribution, we want to estimate the leading (δ, ρ)-modes of the under-
lying distributions. A point is defined to be a (δ, ρ)-mode if it is a local opti-
mum of the density within a δ-neighborhood under metric ρ. As we increase
the “scale” parameter δ, the neighborhood size increases and the total number of
modes monotonically decreases. The sequence of the (δ, ρ)-modes reveal intrin-
sic topographical information of the underlying distributions. Though the mode
finding problem is generally intractable in high dimensions, this paper unveils
that, if the distribution can be approximated well by a tree graphical model, mode
characterization is significantly easier. An efficient algorithm with provable theo-
retical guarantees is proposed and is applied to applications like data analysis and
multiple predictions.

1 Introduction
Big Data challenge modern data analysis in terms of large dimension, insufficient sample and the
inhomogeneity. To handle these challenges, new methods for visualizing and exploring complex
datasets are crucially needed. In this paper, we develop a new method for computing diverse modes
of the unknown discrete distribution function. Our method is applicable in many fields, such as
computational biology, computer vision, etc. More specifically, our method aims to find a sequence
of (δ, ρ)-modes, which are defined as follows:
Definition 1 ((δ, ρ)-modes). A point is a (δ, ρ)-mode if and only if its probability is higher than all
points within distance δ under a distance metric ρ.

With a metric ρ(·) given, the δ-neighborhood of a point x,Nδ(x), is defined as the ball centered
at x with radius δ. Varying δ from small to large, we can examine the topology of the underlying
distribution at different scales. Therefore δ is also called the scale parameter. When δ = 0,Nδ(x) =
{x}, so every point is a mode. When δ = ∞, Nδ(x) is the whole domain, denoted by X , so the
maximum a posteriori is the only mode. As δ increases from zero to infinity, the δ-neighborhood of x
monotonically grows and the set of modes, denoted byMδ , monotonically decreases. Therefore as δ
increases, the sets ofMδ form a nested sequence, which can be viewed as a multi-scale description
of the underlying probability landscape. See Figure 1 for an illustrative example. In this paper,
we will use the Hamming distance, ρH, i.e., the number of variables at which two points disagree.
Other distance metrics, e.g., the L2 distance ρL2(x, x′) = ‖x− x′‖2, are also possible but with more
computational challenges.

The concept of modes can be justified by many practical problems. We mention the following
two motivating applications: (1) Data analysis: modes of multiple scales provide a comprehensive
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geometric description of the topography of the underlying distribution. In the low-dimensional
continuous domain, such tools have been proposed and used for statistical data analysis [20, 17, 3].
One of our goals is to carry these tools to the discrete and high dimensional setting. (2) Multiple
predictions: in applications such as computational biology [9] and computer vision [2, 6], instead of
one, a model generates multiple predictions. These predictions are expected to have not only high
probability but also high diversity. These solutions are valid hypotheses which could be useful in
other modules down the pipeline. In this paper we address the computation of modes, formally,

Problem 1 (M -modes). For all δ’s, compute the M modes with the highest probabilities inMδ .

This problem is challenging. In the continuous setting, one often starts from random positions,
estimates the gradient of the distribution and walks along it towards the nearby mode [8]. However,
this gradient-ascent approach is limited to low-dimensional distributions over continuous domains.
In discrete domains, gradients are not defined. Moreover, a naive exhaustive search is computa-
tionally infeasible as the total number of points is exponential to dimension. In fact, even deciding
whether a given point is a mode is expensive as the neighborhood has exponential size.

In this paper, we propose a new approach to compute these discrete (δ, ρ)-modes. We show that
the problem becomes computationally tractable when we restrict to distributions with tree factor
structures. We explore the structure of the tree graphs and devise a new algorithm to compute
the top M modes of a tree-structured graphical model. Inspired by the observation that a global
mode is also a mode within smaller subgraphs, we show that all global modes can be discovered
by examining all local modes and their consistent combinations. Our algorithm first computes local
modes, and then computes the high probability combinations of these local modes using a junction
tree approach. We emphasize that the algorithm itself can be used in many graphical model based
methods, such as conditional random field [10], structured SVM [22], etc.

When the distribution is not expressed as a factor graph, we will first estimate the tree-structured
factor graph using the algorithm of Liu et al. [13]. Experimental results demonstrate the accuracy
and efficiency of our algorithm. More theoretical guarantee of our algorithm can be found in [7].

Related work. Modes of distributions have been studied in continuous settings. Silverman [21]
devised a test of the null hypothesis of whether a kernel density estimation has a certain number
of modes or less. Modes can be used in clustering [8, 11]. For each data point, a monotonically
increasing path is computed using a gradient-ascend method. All data points whose gradient path
converge to a same mode is labeled the same class. Modes can be also used to help decide the
number of mixture components in a mixture model, for example as the initialization of the maximum
likelihood estimation [11, 15]. The topographical landscape of distributions has been studied and
used in characterizing topological properties of the data [4, 20, 17]. Most of these approaches
assume a kernel density estimation model. Modes are detected by approximating the gradient using
k-nearest neighbors. This approach is known to be inaccurate for high dimensional data.

We emphasize that the multi-scale view of a function has been used broadly in compute vision.
By convolving an image with a Gaussian kernel of different widths, we obtain different level of
details. This theory, called the scale-space theory [25, 12], is used as the fundamental principle
of most state-of-the-art image feature extraction techniques [14, 16]. This multi-scale view has
been used in statistical data analysis by Chaudhuri and Marron [3]. Chen and Edelsbrunner [5]
quantitatively measured the topographical landscape of an image at different scales.

Chen et al. [6] proposed a method to compute modes of a simple chain model. However, restrict-
ing to a simple chain will limit our mode prediction accuracy. A simple chain model has much less
flexibility than tree-factored models. Even if the distribution has a chain structure, recovering the
chain from data is computationally intractable: the problem requires finding the chain with maximal
total mutual information, and thus is equivalent to the NP-hard travelling salesman problem.

P (x) P (x)

δ = 1 δ = 4

� = 1 � = 4 � = 7� = 0δ = 0 δ = 1

� = 1 � = 4 � = 7� = 0 δ = 4 δ = 7

Figure 1: An illustration of modes of different scales. Each vertical bar corresponds to an element. The height
corresponds to its probability. Left: when δ = 1, there are three modes (red). Middle: when δ = 4, only two
modes left. Right: the multi-scale view of the landscape.
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2 Background
Graphical models. We briefly introduce graphical models. Please refer to [23, 19] for more details.
The graphical model is a powerful tool to model the joint distribution of a set of interdependent
random variables. The distribution is encrypted in a graph G = (V, E) and a potential function f .
The set of vertices/nodes V corresponds to the set of discrete variables i ∈ [1, D], where D = |V|.
A node i can be assigned a label xi ∈ L. A label configuration of all variables x = (x1, . . . , xD)
is called a labeling. We denote by X = LD the domain of all labelings. The potential function
f : X → R assigns to each labeling a real value, which is inversely proportional to the logarithm
of the probability distribution, p(x) = exp(−f(x)− A), where A = log

∑
x∈X exp(−f(x)) is the

log-partition function. Thus the maximal modes of the distribution and the minimal modes of f have
a one-to-one correspondence. Assuming these variables satisfy the Markov properties, the potential
function can be written as

f(x) =
∑

(i,j)∈Efi,j(xi, xj), (2.1)

where fi,j : L × L → R is the potential function for edge (i, j) 1. For convenience, we assume any
two different labelings have different potential function values.

We define the following notations for convenience. A vertex subset, V ′ ⊆ V , induces a subgraph
consisting of V ′ together with all edges whose both ends are within V ′. In this paper, all subgraphs
are vertex-induced. Therefore, we abuse the notation and denote both the subgraph and the vertex
subset by the same symbol.

We call a labeling of a subgraph B a partial labeling. For a given labeling y, we may denote
by yB its label configurations of vertices of B. We say the distance between two partial labelings
xB and yB′ is equal to the Hamming distance between the two within the intersection of the two
subgraphs B̂ = B ∩ B′, formally, ρ(xB , yB′) = ρ(xB̂ , yB̂). We denote by fB(yB) the potential
of the partial labeling, which is only evaluated over edges within B. When the context is clear, we
drop the subscript B and write f(yB).

Tree density estimation. In this paper, we focus on tree-structured graphical models. A distri-
bution that is Markov to a tree structure has the following factorization:

P (X = x) = p(x) =
∏

(i,j)∈E
p(xi, xj)

p(xi)p(xj)

∏
k∈Vp(xk). (2.2)

It is easy to see that the potential function can be written in the form (2.1). In the case when the
input is a set of samples, we will first use the tree density estimation algorithm [13] to estimate
the graphical model. The oracle tree distribution is the one on the space of all tree distributions
that minimizes the Kullback-Leibler (KL) divergence between itself and the tree density, that is,
q∗ = argminq∈PT D(p∗||q), where PT is the family of distributions supported on a tree graph, p∗ is
the true density, and D(p||q) =

∑
x∈X p(x)(log p(x)− log q(x)) is the KL divergence. It is proved

[1] that q∗ has the same marginal univariate and bivariate distribution as p∗. Hence to recover q∗, we
only need to recover the structure of the tree. Denote by E∗ the edge set of the oracle tree. Simple
calculation shows that D(p∗||q∗) = −

∑
(i,j)∈E∗ Iij + const, where

Iij =
∑L
xi=1

∑L
xj=1p

∗(xi, xj)(log p
∗(xi, xj)− log p∗(xi)− log p∗(xj)) (2.3)

is called the mutual information between node i and j. Therefore we can apply Kruskal’s maximum
spanning tree algorithm to obtain E∗, with edge weights being the mutual information.

In reality, we do not know the true marginal univariate and bivariate distribution. We thus
compute estimators Îij from the data set

{
X(1), . . . , X(n)

}
by replacing p∗(xi, xj) and p∗(xi)

in (2.3) with their estimates p̂(xi, xj) = 1
n

∑n
s=1 1{X

(s)
i = xi, X

(s)
j = xj} and p̂(xi) =

1
n

∑n
s=1 1{X

(s)
i = xi}. The tree estimator is thus obtained by Kruskal’s algorithm:

T̂n = argmaxT
∑

(i,j)∈E(T )Îij . (2.4)

By definition, the potential function on each edge can be estimated similarly using the estimated
marginal univariate and bivariate distributions. By (2.1), we have f̂(x) =

∑
(i,j)∈E(T̂ ) f̂i,j(xi, xj),

where T̂ is the estimated tree using Kruskal’s algorithm.
1For convenience, we drop unary potentials fi in this paper. Note that any potential function with unary

potentials can be rewritten as a potential function without them.
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Figure 2: Left: The junction tree with radius r = 2. We show the geodesic balls of three supernodes. In each
geodesic ball, the center is red. The boundary vertices are blue. The interior vertices are black and red.
Right-bottom: Candidates of a geodesic ball. Each column corresponds to candidates of one boundary labeling.
Solid and empty vertices represent label zero and one. Right-top: A geodesic ball with radius r = 3.

3 Method
We present the first algorithm to computeMδ for a tree-structured graph. To compute modes of all
scales, we go through δ’s from small to large. The iteration stops at a δ with only a single mode.

We first present a polynomial algorithm for the verification problem: deciding whether a given
labeling is a mode (Sec. 3.1). However, this algorithm is insufficient for computing the topM modes
because the space of labelings is exponential size. To compute global modes, we decompose the
problem into computing modes of smaller subgraphs, which are called local modes. Because of the
bounded subgraph size, local modes can be solved efficiently. In Sec. 3.2, we study the relationship
between global and local modes. In Sec. 3.3 and Sec. 3.4, we give two different methods to compute
local modes, depending on different situations.

3.1 Verifying whether a labeling is a mode
To verify whether a given labeling y is a mode, we check whether there is another labeling within
Nδ(y) with a smaller potential. We compute the labeling within the neighborhood with the minimal
potential, y∗ = argminz∈Nδ(y) f(z). The given labeling y is a mode if and only if y∗ = y.

We present a message-passing algorithm. We select an arbitrary node as the root, and thus a
corresponding child-parent relationship between any two adjacent nodes. We compute messages
from leaves to the root. Denote by Tj as the subtree rooted at node j. The message from vertex i
to j, MSGi→j(`i, τ) is the minimal potential one can achieve within the subtree Ti given a fixed
label `i at i and a constraint that the partial labeling of the subtree is no more than τ away from y.
Formally, MSGi→j(`i, τ) = min

zTi :zi=`i,ρ(zTi ,y)≤τ
f(zTi)

where `i ∈ L and τ ∈ [0, δ]. This message cannot be computed until the messages from all children
of i have been computed. For ease of exposition, we add a pseudo vertex s as the parent of the root, r.
By definition, min`r MSGr→s(`r, δ) is the potential of the desired labeling, y∗. Using the standard
backtracking strategy of message passing, we can recover y∗. Please refer to [7] for details of the
computation of each individual message. For convenience we call this procedure Is-a-Mode. This
procedure and its variations will be used later.
3.2 Local and global modes
Given a graph G and a collection of its subgraphs B, we show that under certain conditions, there
is a tight connection between the modes of these subgraphs and the modes of G. In particular, any
consistent combinations of these local modes is a global mode, and vice versa.

Simply considering the modes of a subgraph B is insufficient. A mode of B with small potential
may cause big penalty when it is extended to a labeling of the whole graph. Therefore, when
defining a local mode, we select a boundary region of the subgraph and consider all possible label
configurations of this boundary region. Formally, we divide the vertex set of B into two disjoint
subsets, the boundary ∂B and the interior int(B), so that any path connecting an interior vertex
u ∈ int(B) and an outside vertex v /∈ B has to pass through at least one boundary vertex w ∈ ∂B.
See Figure 2(left) for examples of B. Similar to the definition of a global mode, we define a local
mode as the partial labeling with the smallest potential in its δ-neighborhood:
Definition 2 (local modes). A partial labeling, xB , is a local mode w.r.t. δ-neighborhood if and only
if there is no other partial labeling yB which (C1) has a smaller potential, f(yB) < f(xB); (C2) is
within δ distance from xB , ρ(yB , xB) ≤ δ and (C3) has the same boundary labeling, y∂B = x∂B .
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We denote by Mδ
B the space of local modes of the subgraph B. Given a set of subgraphs B

together with a interior-boundary decomposition for each subgraph, we have the following theorem.

Theorem 3.1 (local-global). Suppose any connected subgraph G′ ⊆ G of size δ is contained within
int(B) of some B ∈ B. A labeling x of G is a global mode if and only if for every B ∈ B, the
corresponding partial labeling xB is a local mode.
Proof. The necessity is obvious since a global mode is a local mode within every subgraph. Note
that necessity is not true any more if the restriction on ∂B (C3 in Definition 2) is relaxed. Next we
show the sufficiency by contradiction. Suppose a labeling x is a local mode within every subgraph,
but is not a global mode. By definition, there is y ∈ Nδ(x) with smaller potential than x. We assume
y and x disagree within a connected subgraph. If y and x disagree within multiple connected compo-
nents, we can always find y′ ∈ Nδ(x) with smaller potential which disagree with x within only one
of these connected components. The subgraph on which x and y disagree must be contained by the
interior of some B ∈ B. Thus xB is not a local mode due to the existence of yB . Contradiction.

We say partial labelings of two different subgraphs are consistent if they agree at all common
vertices. Theorem 3.1 shows that there is a bijection between the set of global modes and the set of
consistent combinations of local modes. This enables us to compute global modes by first compute
local modes of each subgraph and then search through all their consistent combinations.

Instantiating for a tree-structured graph. For a tree-structured graph with D nodes, let B be
the set of D geodesic balls, centered at the D nodes. Each ball has radius r = b δ2c + 1. Formally,
we have Bi = {j | dist(i, j) ≤ r}, ∂Bi = {j | dist(i, j) = r}, and int(Bi) = {j | dist(i, j) < r}.
Here dist(i, j) is the number of edges between the two nodes. See Figure 2(left) for examples. It
is not hard to see that any size δ subtree is contained within a int(Bi) for some i. Therefore, the
prerequisite of Theorem 3.1 is guaranteed.

We construct a junction tree to combine the set of all consistent local modes. It is constructed
as follows: Each supernode of the junction tree corresponds to a geodesic ball. Two supernodes are
neighbors if and only if their centers are neighbors in the original tree. See Figure 2(left). Let the
label set of a supernode be its corresponding local modes, as defined in Definition 2. We construct
a potential function of the junction tree so that a labeling of the junction tree has finite potential if
and only if the corresponding local modes are consistent. Furthermore, whenever the potential of a
junction tree labeling is finite, it is equal to the potential of the corresponding labeling in the original
graph. This construction can be achieved using a standard junction tree construction algorithm, as
long as the local mode set of each ball is given.

The M -modes problem is then reduced to computing the M lowest potential labelings of the
junction tree. This is the M -best labeling problem and can be solved efficiently using Nilsson’s
algorithm [18]. The algorithm of this section is summarized in the Procedure Compute-M-Modes.

Procedure 1 Compute-M-Modes
Input: A tree G, a potential function f and a scale δ
Output: The M modes of the lowest potential

1: Construct geodesic balls B = {Br(c) | c ∈ V}, where r = b δ2c+ 1
2: for all B ∈ B do
3: Mδ

B = the set of local modes of B
4: Construct a junction tree (Figure 2). The label set of each supernode is its local modes.
5: Compute the M lowest-potential labelings of the junction tree, using Nilsson’s algorithm.

3.3 Computing local modes via enumeration
It remains to compute all local modes of each geodesic ball B. We give two different algorithms in
Sec. 3.3 and 3.4. Both methods have two steps. First, compute a set of candidate partial labelings.
Second, choose from these candidates the ones that satisfy Definition 2. In both methods, it is
essential to ensure the candidate set contains all local modes.

Computing a candidate set. The first method enumerates through all possible labelings of
the boundary. For each boundary labeling x∂B , we compute a corresponding subset of candidates.
Each candidate is the partial labeling of the minimal potential with boundary labeling x∂B and a
fixed label ` of the center c. This subset has L elements since c has L labels. Formally, the candidate
subset for a fixed boundary labeling x∂B is CB(x∂B) =

{
argminyBfB(yB)|y∂B = x∂B , yc ∈ L

}
.

It can be computed using a standard message-passing algorithm over the tree, using c as the root.
Denote by XB and X∂B the space of all partial labelings of B and ∂B respectively. The

candidate set we compute is the union of candidate subsets of all boundary labelings, i.e. CB =
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⋃
x∂B∈X∂B CB(x∂B). See Figure 2(right-bottom) for an example candidate set. We can show that

the computed candidate set CB contains all local modes of B.

Theorem 3.2. Any local mode yB belongs to the candidate set CB .

Before proving the theorem, we formalize an assumption of the geodesic balls.

Assumption 1 (well-centered). We assume that after removing the center from int(B), each con-
nected component of the remaining graph has a size smaller than δ.

For example, in Figure 2(right-top), a geodesic ball of radius 3 has three connected components
in int(B)\{c}, of size one, two and three, respectively. Since r = b δ2c + 1, δ is either four or
five. The ball is well-centered. Since the interior of B is essentially a ball of radius r − 1 = b δ2c,
the assumption is unlikely to be violated, as we observed in practice. In the worst case when the
assumption is violated, we can still solve the problem by adding additional centers in the middle of
these connected components. Next we prove the theorem.

Proof of Theorem 3.2. We prove by contradiction. Suppose there is a local mode yB /∈ XB(x∂B)
such that y∂B = x∂B . Let ` be the label of yB at the center c. Let y′B ∈ XB(x∂B) be the candidate
with the same label at the center. Furthermore, the two partial labelings agree at ∂B and at c.
Therefore the two labelings differ at a set of connected subgraphs. Each of the subgraphs has a size
smaller than δ, due to Assumption 1. Since y′B has a smaller potential than yB by definition, we can
find a partial labeling y′′B which only disagree with yB within one of these components. And y′′B has
a smaller potential than yB . Therefore yB cannot be a local mode. Contradiction.

Verifying each candidate. Next, we show how to check whether a candidate is a local mode.
For a given boundary labeling, x∂B , we denote by XB(x∂B) the space of all partial labelings with
fixed boundary labeling x∂B . By definition, a candidate yB ∈ XB(x∂B) is a local mode if and
only if there is no other partial labeling in XB(x∂B) within δ from yB with a smaller potential. The
verification of yB can be transformed into a global mode verification problem and solved by the
algorithm in Sec. 3.1. We use the subgraph B and its potential to construct a new graph. We need
to ensure that only labelings with the fixed boundary labeling x∂B are considered in this new graph.
This can be done by enforcing each boundary node i ∈ ∂B to have xi as the only feasible label.

3.4 Computing local modes using local modes of smaller scales
In Sec. 3.3, we computed the candidate set by enumerating all boundary labelings x∂B . In this
subsection, we present an alternative method when the local modes of the scale δ − 1 has been
computed. We construct a new candidate set using local modes of scale δ − 1. This candidate
set is smaller that the candidate set from the previous subsection and thus leads to a more efficient
algorithm. Since our algorithm computes modes from small scale to large scale. This algorithm can
be used in all scales except for δ = 1. The step of verifying whether each candidate is a local mode
is the same as the previous subsection.

The following notations will prove convenient. Denote by r and r′ the radii of balls for scales δ
and δ − 1 respectively (See Sec. 3.2 for the definition). Denote by Bi and B′i the balls centered at
node i for scales δ and δ− 1. LetMδ

Bi
andMδ−1

B′i
be their sets of local modes at scales δ and δ− 1

respectively. Our idea is to useMδ−1
B′i

’s to compute a candidate set containingMδ
Bi

.

Consider two different cases, δ is odd and even. When δ is odd, r = r′ and Bi = B′i. By
definition,Mδ

Bi
⊆ Mδ−1

Bi
=Mδ−1

B′i
. We can directly use the local modes of the previous scale as

the candidate set for the current scale. When δ is even, r = r′ + 1. The ball Bi is the union of the
B′j’s for all j adjacent to i, Bi =

⋃
j∈Ni B

′
j , where Ni is the set of neighbors of i. We collect the set

of all consistent combinations ofMδ−1
B′j

for all j ∈ Ni as the candidate set. This set is a superset of

Mδ
Bi

, because a local mode at scale δ has to be a local mode at scale δ − 1.
Dropping unused local modes. In practice, we observe that a large amount of local modes

do not contribute to any global mode. These unused local modes can be dropped when computing
global modes and when computing local modes of larger scales. To check if a local mode of Bi can
be dropped, we compare it with all local modes of an adjacent ball Bj , j ∈ Ni. If it is not consistent
with any local mode of Bj , we drop it. We go through all adjacent balls Bj in order to drop as many
local modes as possible.
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(a) (b) (c) (d)

Figure 3: Scalability.

3.5 Complexity
There are three steps in our algorithm for each fixed δ: computing, verifying candidates and comput-
ing theM best labelings of the junction tree. Denote by d the tree degree. Denote by λ the maximum
number of undropped local modes for any ball B and scale δ. When δ = 1, we use the enumeration
method. Since the ball radius is 1, the ball boundary size is O(d). There are at most Ld many can-
didates for each ball. When δ > 1, we use local modes of the scale δ − 1 to construct the candidate
set. Since each ball of scale δ is the union of O(d) many balls of scale δ − 1, there are at most λd
many candidates per node. The verification takesO(DdLδ2(L+δ)) time per candidate. (See [7] for
complexity analysis of the verification algorithm.) Therefore overall the computation and verifica-
tion of all local modes for all D balls is O(D2dLδ2(L+ δ)(Ld + λd)). The last step runs Nilsson’s
algorithm on a junction tree with label sizeO(λ), and thus takesO(Dλ2+MDλ+MD log(MD)).
Summing up these complexities gives the final complexity.

Scalability. Even though our algorithm is not polynomial to all relevant parameters, it is efficient
in practice. The complexity is exponential to the tree degree (d). However, in practice, we can
enforce an upperbound of the tree degree in the model estimation stage. This way we can assume
d to be constant. Another parameter in the complexity is λ, the maximal number of undropped
local modes of a geodesic ball. When the scale δ is large, λ could be exponential to the graph size.
However, in practice, we observe that λ decreases quickly as δ increases. Therefore, our algorithm
can finish in a reasonable time. See Sec. 4 for more discussions.

4 Experiment
To validate our method, we first show the scalability and accuracy of our algorithm in synthetic data.
Furthermore, we demonstrate using biological data how modes can be used as a novel analysis tool.
Quantitative analysis of modes reveals new insight of the data. This finding is well supported by a
visualization of the modes, which intuitively outlines the topographical map of the distribution. In
all experiments, we choose M to be 500. At bigger scales, there are often less than M modes in
total. As mentioned earlier, modes can also be applied to the problem of multiple predictions [7].

Scalability. We randomly generate tree-structured graphical model (tree size D =200 . . . 2000,
label size L = 3) and test the speed. For each tree size, we generates 100 random data. In Figure
3(a), we show the running time of our algorithm to compute modes of all scales. The running time
is roughly linear to the graph size. In Figure 3(b) we show the average running time for each delta
when the graph size is 200, 1000 and 2000. As we see most of the computation time is spent on
computations with δ = 1 and 2. Note only when δ = 1, the enumeration method is used. When
δ ≥ 2, we reuse local modes of previous δ. The algorithm speed depends on the parameter λ, the
maximum number of undropped local modes over all balls. In Figure 3(c), we show that λ drops
quickly as the scale increases. We believe this is critical to the overall efficiency of our method. In
Figure 3(d), we show the average number of global modes at different scales.

Accuracy. We randomly generate tree-structured distributions (D = 20, L = 2). We select
the trees with strong modes as ground-truth trees, i.e. those with at least two modes up to δ = 7.
See Figure 4(a) for the average number of modes at different scales over these selected tree models.
Next we sample these trees and then use the samples to estimate a tree model to approximate this
distribution. Finally we compute modes of the estimated tree and compare them to the modes of the
ground-truth trees.

To evaluate the sensitivity of our method to noise, we randomly flip 0%, 5%, 10%, 15% and 20%
labels of these samples. We compare the number of predicted modes to the number of true modes
for each scale. The error is normalized by the number of true modes. See Figure 4(b). With small
noise, our prediction is accurate except for δ = 1, when the number of true modes is very large. As
the noise level increases, the error increases linearly. We do notice an increase of error at near δ = 7.
This is because at δ = 8, many data become unimodal. Predicting two modes leads to 50% error.
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(a) (b) (c) (d)

Figure 4: Accuracy. Denote by ε the noise level, n the sample size.

We also measure the prediction accuracy using the Hausdorff distance between the predicted
modes and the true modes. The Hausdorff distance between two finite points sets X and Y is
defined as max (maxx∈X miny∈Y ρ(x, y),maxy∈Y minx∈X ρ(x, y)). The result is shown in Figure
4(c). We normalize the error using the tree size D. So the error is between zero and one. The error
is again increasing linearly w.r.t. the noise level. An increase at δ = 7 is due to the fact that many
data change from multiple modes to one single mode. In Figure 4(d), we compare for a same noise
level the error when we use different sample sizes. When the sample size is 10K, we have bigger
error. When the sample size is 80K and 40K, the errors are similar and small.

Biological data analysis. We compute modes of the microarray data of Arabidopsis thaliana
plant (108 samples, 39 dimensions) [24]. Each gene has three labels: “+”, “0” and “-” respectively
denote over-expression, normal-expression and under-expression of the genes. Based on the data
sample we estimate the tree graph and compute the top modes with different radiuses δ using Ham-
ming distance. We use multidimensional scaling to map these modes so that their pairwise Hamming
distance is approximated by the L2 distance in R2. The result is visualized in Fig. 5 with different
scales. The size of the points is proportional to the log of its probability. Arrows in the figure show
how each mode merges to survived modes at the larger scale. The graph intuitively shows that there
are two major modes when viewed from a large scale and even shows how the modes evolve as we
change the scale.

(a) (b) (c) (d)

Figure 5: Microarray results. From left to right: scale 1 to 4.

5 Conclusion
This paper studies the (δ, ρ)-mode estimation problem for tree graphical models. The significance
of this work lies in several aspects: (1) we develop an efficient algorithm to illustrate the intrin-
sic connection between structured statistical modeling and mode characterization; (2) our notion of
(δ, ρ)-modes provides a new tool for visualizing the topographical information of complex discrete
distributions. This work is the first step towards understanding the statistical and computational as-
pects of complex discrete distributions. For future investigations, we plan to relax the tree graphical
model assumption to junction trees.
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[24] A. Wille, P. Zimmermann, E. Vranová, A. Fürholz, O. Laule, S. Bleuler, L. Hennig, A. Prelic, P. von
Rohr, L. Thiele, et al. Sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis
thaliana. Genome Biol, 5(11):R92, 2004.

[25] A. Witkin. Scale-space filtering. Readings in computer vision: issues, problems, principles, and
paradigms, pages 329–332, 1987.

9


	Introduction
	Background
	Method
	Verifying whether a labeling is a mode
	Local and global modes
	Computing local modes via enumeration
	Computing local modes using local modes of smaller scales
	Complexity

	Experiment
	Conclusion

