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Abstract

Algebraic topology is generally considered one of the purest subfields of math-
ematics. However, over the last decade two interesting new lines of research have
emerged, one focusing on algorithms for algebraic topology, and the other on appli-
cations of algebraic topology in engineering and science. Amongst the new areas
in which the techniques have been applied are computer vision and image process-
ing. In this paper, we survey the results of these endeavours. Because algebraic
topology is an area of mathematics with which most computer vision practition-
ers have no experience, we review the machinery behind the theories of homology
and persistent homology; our review emphasizes intuitive explanations. In terms
of applications to computer vision, we focus on four illustrative problems: shape
signatures, natural image statistics, image denoising, and segmentation. Our hope
is that this review will stimulate interest on the part of computer vision researchers
to both use and extend the tools of this new field.

1 Introduction
Algebraic topology, with roots dating to Poincaré at the beginning of the twentieth
century, has traditionally been considered one of the purest subfields of mathematics,
with very few connections to applications. The last decade, however, has witnessed
an explosion of interest in computational aspects of algebraic topology, and with the
development of this computational machinery, a concomitant interest in applications.
In this paper, we review some of these developments, and show how methods of com-
putational algebraic topology may be fruitfully applied to problems of computer vision
and image processing. We hope that this review will stimulate interest on the part of
computer vision researchers to both use and extend these tools.

As we have noted, the new interest in algebraic topological tools has been fueled
by two parallel developments: the design of new algebraic topological algorithms, and
the application of these algorithms to various scientific and engineering fields. The
new algorithms have focused almost exclusively on computations involving homology
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groups; without going into detail at this point (we defer a formal description of ho-
mology theory until Section 2), we may note that homology groups are topological
invariants which, roughly speaking, count the number of holes of various dimensions
that a topological space has. The great advantage conferred by homology groups is
that these groups are relatively straightforward to compute with, as opposed to other
topological concepts such as homotopy groups, or worse, homeomorphism equivalence
classes. In particular, the concept of persistent homology as introduced by Edelsbrun-
ner et al. [1], has proven to be very useful. The new framework has been applied to a
number of fields, including molecular biology [2, 3], sensor networks [4], robotics [5],
graphics [6], geometric modeling [7], as well as computer vision and image processing.

Why use topological tools in computer vision? One answer is that, generally speak-
ing, topological invariants tend to be very robust. If the topological space is stretched
and deformed continuously, without any tearing or gluing, then the topological invari-
ants of the space will be preserved. This is, of course, by design: topology is essentially
the study of invariants of spaces under this group of transformations – continuous bijec-
tions with continuous inverses, also known as homeomorphisms. This property might
be quite useful in the design of shape signatures, where the goal is to find a compact
description of a shape which does not change much (if it all) when the shape undergoes
some types of deformation.

Unfortunately, traditional topological invariants suffer from some problems from
the point of view of the applied scientist. On the one hand, such invariants are perhaps
“too robust:” very different shapes, such as the hand and the circle in Figure 1, may
be topologically equivalent, thus leading to poor shape signatures. On the other hand,
topological invariants can be quite sensitive to noise; this phenomenon is illustrated in
Figure 1, in which two spaces – a torus and a two-handled torus – appear very similar,
but are in fact topologically different due to the presence of the tiny handle.

Some of the methods developed in the last decade in the field of applied and com-
putational algebraic topology attempt to deal with these two situations. In the case
of shape signatures, one remedy involves augmenting the base topological space with
extra geometric information, thereby creating a new topological space. Standard topo-
logical invariants can then be computed for this augmented space, leading to more
discriminating shape signatures. We will see an example of this type of augmentation
in Section 3.1. For the case of the sensitivity of topological invariants to noise, the
theory of persistent homology has been developed. This theory deals with “topolog-
ical noise,” by examining not only the topological features of a space, but also their
“lifetime,” or significance. Aspects of persistent homology will be used throughout the
paper.

The fields of applied and computational algebraic topology are quite new, with
most of the key developments having taken place in the last decade. The applications
of these ideas to computer vision and image processing are even newer, with most of
the relevant work have appeared in the last five years. As a result, this paper is perhaps
slightly different from a traditional survey or review of the literature. We focus on two
goals: presenting the mathematical material – which can be quite daunting at first blush
– in an accessible fashion, and reviewing some of the most interesting applications of
this material to computer vision and image processing. The main goal of the paper is to
stimulate interest in these new algebraic topological tools on the part of the computer

2



 
 

(a) (b) (c) (d)

Figure 1: The problems with topological invariants. The hand-like shape in (a) and
the circle in (b) are quite different shapes, but they possess the same topology. On the
flip side, the ordinary torus in (c) is similar to the two-handled torus in (d), due to the
fact that the second handle is very small (i.e. is “topological noise”). However, their
topological descriptors will be different.

vision community, so that the tools may be applied to new problems, and perhaps
computationally and theoretically extended as well.

The remainder of the paper is organized as follows. In Section 2, we review the
relevant material from algebraic topology, focusing in particular on homology theory
and persistent homology. Although the material is presented in a way to make it as
intuitive as possible, references to various standard texts and papers are given, to aid
the reader interested in pursuing the topic further. Section 3 presents four interest-
ing and illustrative applications of the topological techniques to computer vision and
image processing. In Section 3.1, the problem of designing a shape signature is consid-
ered. Section 3.2 examines the problems of natural image statistics, and shows that the
new topological techniques can contribute to a more accurate characterization of these
statistics. Section 3.3 discusses the traditional problem of noise reduction, and simul-
taneously examines the problem of image segmentation. Persistent homology leads to
a Mean Shift like algorithm, but one which has a rigorous way of merging segments.
Finally, Section 4 concludes.

2 A Review of Persistent and Computational Homology
In this section, we provide the necessary background in algebraic topology, including
a discussion of simplicial complexes, homology groups, and persistent homology. We
will try to give an accessible introduction to the relevant notions, but given the space
limitations our discussion will necessarily be somewhat brief. The interested reader is
referred to [8, 9] for further details in general algebraic topology; [10, 11] for surveys
of persistent homology; [12, 13] for surveys of computational topology; and [14] for
an overview of topological data analysis.

2.1 Simplicial Complex
A d-dimensional simplex or d-simplex, σ, is the convex hull of d+ 1 affinely indepen-
dent vertices, which means for any of these vertices, vi, the d vectors vj − vi, j 6= i,
are linearly independent. In other words, given a set of d + 1 vertices such that no
m-dimensional plane contains more than m+ 1 of them, a simplex is the set of points
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each of which is a linear combination of these vertices, with all coefficients nonnega-
tive and summing to 1. A 0-simplex, 1-simplex, 2-simplex and 3-simplex are a vertex,
edge, triangle and tetrahedron, respectively (Figure 2). The convex hull of a nonempty

Figure 2: Simplices of dimension 0, 1, 2 and 3.

subset of vertices of σ is its face.
A simplicial complex K is a finite set of simplices that satisfies the following two

conditions.

1. Any face of a simplex in K is also in K.

2. The intersection of any two simplices in K is either empty or is a face for both
of them.

The dimension of a simplicial complex is the highest dimension of its simplices. If a
subset K0 ⊆ K is a simplicial complex, it is a subcomplex of K.

Please see Figure 3 for an example simplicial complex. The triangulation of the
solid cube provides 3-dimensional simplices. Therefore the simplicial complex is 3-
dimensional.

Figure 3: An example simplicial complex. It is the combination of the triangulation
of a tube (open in both ends), an annulus and a solid cube. Note that the tube and the
annulus share a common edge.

2.2 The Chain Group
In this paper, we only use simplicial homology of Z2 coefficients, which is introduced
in this section. For completeness, in Section 2.5, we briefly discuss simplicial homol-
ogy of other coefficient rings.

Within a given simplicial complex K, a d-chain is a formal sum of d-simplices in
K, namely

c =
∑
σ∈K

aσσ, aσ ∈ Z2.
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Note that since the field is Z2, the set of d-chains is in one-to-one correspondence with
the set of subsets of d-simplices. A d-chain corresponds to a nd-dimensional vector,
whose entries are 0 or 1; the nonzero entries correspond to the included d-simplices.
Here nd is the number of d-simplices in K. For example, in Figure 4, the (formal sum
of) red edges form a 1-chain and the (formal sum of) dark grey triangles form a 2-chain.

If we define the addition of chains as the addition of these vectors, all the d-chains
form the group of d-chains, Cd(K). Note that addition is using Z2 (i.e. mod 2) arith-
metic.

2.3 The Cycle and Boundary Groups
The boundary of a d-simplex is the (d−1)-chain which is the formal sum of the (d−1)-
simplices which are faces of the d-simplex. For example, the boundary of 1-simplex
is the chain which is the formal sum of the two vertices which are its endpoints. The
boundary of a d-chain c is then defined as the sum of the (d − 1)-chains which are
boundaries of each of the individual d-simplices appearing in the formal sum c. It is
important to note that the sum over chains uses Z2 (i.e. mod 2) arithmetic, as described
in Section 2.2.

This concept is best illustrated by way of example. In Figure 4, the green edges
form the boundary of the 2-chain formed by the three dark grey triangles. Two out of
seven 1-dimensional faces (edges) of the triangles do not appear in the boundary due to
the mod 2 addition. Similarly, tetrahedra of the cube form a 3-chain whose boundary
is the triangles of the box bounding the cube.

Figure 4: The green cycle is a boundary. The two blue cycles belong to a nontrivial
class. The red cycle represents another nontrivial class.

The boundary operator ∂d : Cd(K)→ Cd−1(K) is a group homomorphism, which
means that the boundary of the sum of any two d-chains is equal to the sum of their
boundaries, formally,

∂d(c1 + c2) = ∂d(c1) + ∂d(c2), ∀c1, c2 ∈ Cd(K).
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Figure 5: A simplicial complex K containing five 0-simplices, seven 1-simplices and
two 2-simplices.

See Figure 5 for a simplicial complex whose boundary matrices are

∂1 =


ab ac ad ae bc cd ce

a 1 1 1 1 0 0 0
b 1 0 0 0 1 0 0
c 0 1 0 0 1 1 1
d 0 0 1 0 0 1 0
e 0 0 0 1 0 0 1

 and ∂2 =



acd ace
ab 0 0
ac 1 1
ad 1 0
ae 0 1
bc 0 0
cd 1 0
ce 0 1


.

By convention, we define ∂0 ≡ 0.
A d-cycle is a d-chain with zero boundary. The set of d-cycles forms a subgroup

of the chain group, which is the kernel of the boundary operator, Zd(K) = ker(∂d).
The set of d-boundaries are defined as the image of the boundary operator, Bd(K) =
img(∂d+1); this set is in fact a group. A d-cycle which is not a d-boundary, z ∈
Zd(K) − Bd(K), is a nonbounding cycle. In Figure 4, both the green and red chains
are 1-cycles. (The red chain goes around the interior of the tube, but some parts are
necessarily occluded in the rendering.) But only the red chain is nonbounding. It is
not hard to see that a d-boundary is also a d-cycle. Therefore, Bd(K) is a subgroup of
Zd(K).

In our case, the coefficients belong to a field, namely Z2; when this is the case,
the groups of chains, boundaries and cycles are all vector spaces.1 Computing the
boundary of a d-chain corresponds to multiplying the chain vector with a boundary
matrix [b1, ..., bnd

], whose column vectors are boundaries of d-simplices in K. By
slightly abusing notation, we call the boundary matrix ∂d.

2.4 The Homology Group
In algebraic topology, we want to capture all the nonbounding cycles, and more im-
portantly, to classify them. We classify cycles into equivalence classes, each of which

1Note that this is not true when the homology is over a ring which is not a field, such as Z.
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contains the set of cycles whose difference is a boundary. A homology class is the set
of cycles

{z | z = z0 + ∂d+1c, c ∈ Cd+1(K)},

for a fixed z0. This set, denoted as [z0] = z0 + Bd(K), is called a coset. Any cycle
belonging to the class can be the representative cycle, z0. When the representative
cycle z0 is a boundary, [z0] = 0 + Bd(K) is the boundary group itself.

The set of equivalence classes (one of which is the boundary group), under addition
defined by the addition of their representative cycles, forms a nice group structure.
This group of equivalent classes is the quotient group Hd(K) = Zd(K)/Bd(K), and
is called the d-dimensional homology group. The boundary group 0 + Bd(K) is the
identity element of Hd(K). Otherwise, when z0 is a nonbounding cycle, [z0] is a
nontrivial homology class represented by z0. Cycles of the same homology class are
said to be homologous to each other, formally, z1 ∼ z2.

In Figure 4, the two blue cycles are homologous to each other, but not to the red
and green cycles. The 1-dimensional homology group has four different members,
represented by the green cycle (corresponding to the boundary group), the red cycle,
one of the blue cycles, and the sum of a red cycle and a blue cycle, respectively.

In Figure 5, the simplicial complex has 1 nontrivial homology class, represented by
four different nonbounding cycles, (ab + ac + bc), (ab + ad + bc + cd), (ab + ae +
bc + ce), and (ab + ac + ad + ae + bc + cd + ce), whose corresponding vectors are
(1, 1, 0, 0, 1, 0, 0)T , (1, 0, 1, 0, 1, 1, 0)T , (1, 0, 0, 1, 1, 0, 1)T , and (1, 1, 1, 1, 1, 1, 1)T re-
spectively.

All of the groups we have defined thus far have the structure of vector spaces over
the field Z2. We can therefore speak of the dimension of any of these groups, by which
we mean the dimension of the corresponding vector space.2 The dimension of the
homology group is referred to as the Betti number,

βd = dim(Hd(K))
= dim(Zd(K))− dim(Bd(K)).

By linear algebra, the Betti number can be computed by computing the ranks of all
boundary matrices.

βd = (nd − rank(∂d))− rank(∂d+1).

As the dimension of the chain group is upper bounded by the cardinality of K, n, so
are the dimensions of Bd(K), Zd(K) and Hd(K).

We note that the 0-dimensional homology group provides information about the
number of connected components of a topological space. In particular, the 0th Betti
number, β0, is equal to the number of connected components. For dimensions d higher
than zero, the Betti number yields information about the number of “independent d-
dimensional holes” in that space. This last sentence is of course imprecise, and is
meant only to convey intuition.

2The definitions which follow can be made without requiring the vector space property, but further math-
ematical apparatus is required.

7



2.5 Extensions of Homology Theory
Whereas the simplicial homology studies a topological space by studying its triangula-
tion, for a general topological space, we could use singular homology. In singular ho-
mology, a simplex is defined as a continuous mapping (not necessarily injective) from
the standard simplex to the topological space. The definition is extended to chains,
boundary operations and singular homology groups. It can be proven that the sim-
plicial homology of a simplicial complex is isomorphic to the singular homology of
its geometric realization (the underlying space). This implies, in particular, that the
simplicial homology of a space does not depend on the particular simplicial complex
chosen for the space. In the figures in this paper, we may sometimes ignore the simpli-
cial complex and only show the continuous images of chains.

We restrict our discussion of simplicial homology to be over the Z2 field. In gen-
eral, the coefficients may belong to arbitrary abelian groups. In such cases, the group
structure of the homology can be more complicated. See [8] for more details.

2.6 Computation of Homology
Through a sequence of row and column operations, we can transform the boundary
matrices. For example, in the simplicial complex of Figure 5, the boundary matrices
can be rewritten as

∂′1 =


ab ac ad ae ab+ ac+ bc ac+ ae+ ce ac+ ad+ cd

a+ b 1 0 0 0 0 0 0
a+ c 0 1 0 0 0 0 0
a+ d 0 0 1 0 0 0 0
a+ e 0 0 0 1 0 0 0
a 0 0 0 0 0 0 0

 and

∂′2 =



acd ace
ac+ ad+ cd 1 0
ac+ ae+ ce 0 1
ab+ ac+ bc 0 0

ae 0 0
ad 0 0
ac 0 0
ab 0 0


.

What is the purpose of such row and column operations? These operations ef-
fectively change the bases of the chain groups: 0- and 1-dimensional chain groups in
the case of ∂1, and 1- and 2-dimensional chain groups in the case of ∂2. For the d-
dimensional boundary matrix, the set of zero columns corresponds to a basis of the
d-dimensional cycle group, i.e. {ab+ ac+ bc, ac+ ae+ ce, ac+ ad+ cd}. The set of
nonzero rows corresponds to a basis of the (d−1)-dimensional boundary group. There
is a one-to-one correspondence between this boundary basis and the set of d-chains
corresponding to nonzero columns, specified by these nonzero diagonal entries in the
new boundary matrix.3 Each element of this (d− 1)-dimensional boundary basis is the

3The relationship may be more complicated if the homology is not over Z2 field.
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boundary of its corresponding d-chain. In our example, the chains ac + ad + cd and
ac+ ae+ ce are the boundaries of the 2-chains acd and ace, respectively.

In general, combinations of such row and column operations are referred to as re-
ductions. As can be seen from the example above, reductions enable the computation
of Betti numbers by finding the dimensions of the cycle and boundary groups. When
the homology is over a field, as it is in our case, the reduction may be computed by
Gaussian elimination.4 If the homology is not over a field, a more complicated reduc-
tion using the so-called Smith Normal Form [15] must be used.

The idea of reducing the boundary matrices into canonical forms [8] has been ex-
tended to various reduction algorithms for different purposes [16, 10, 17]. Next, we
will introduce one specific reduction, namely, the persistent homology reduction.

2.7 Persistent Homology
We first give the intuition. Given a topological space X and a filter function f : X →
R, persistent homology studies changes in the topology of the sublevel sets, Xt =
f−1(−∞, t]. In Figure 6 the topological space is the 2-dimensional plane R2 and
the filter function is the peaks function in MATLAB. Sublevel sets with different
threshold t appear to have different topology (Figure 7).

As we increase the threshold t from −∞ to +∞, the sublevel set grows from
the empty set to the entire topological space. During the growth, different homology
classes may be born and then die. For example, in Figure 7(a), a new component is
born. This component dies later (Figure 7(b)), when it merges into some component
born earlier. In Figure 7(c), a new hole is born when a same component contacts itself.
The newborn hole dies (Figure 7(d)) when it is sealed up.

The purpose of persistent homology is to characterize the filter function in terms of
the topological changes undergone by the sublevel sets of the function, as they proceed
from the empty set to the entire domain. A key step in this process involves comput-
ing the birth and death times of these components (0-dimensional homology classes)
and holes (1-dimensional classes), and more generally, higher dimensional homology
classes. By birth, we mean a homology class comes into being; by death, we mean
it either becomes trivial or becomes identical to some other class born earlier. The
persistence, or lifetime of a class is the difference between its death and birth times.
Those with longer lives tell us something about the global structure of the space X, as
described by the filter function.

Next, we introduce the formal definition of the persistent homology of a simplicial
complex K filtered by a scalar function, see for example [1, 18]. (In the example of
Figure 7, we may imagine a triangulation of the relevant topological space, i.e. the
plane.) A filter function f : K → R assigns each simplex in K a real value, such
that the function value of a simplex is no smaller than those of its faces. Without loss
of generality, we assume that the filter function values of all simplices are different.
Simplices of K are sorted in ascending order according to their filter function values,

(σ1, σ2, · · · , σm), f(σi) < f(σi+1), ∀1 ≤ i ≤ m− 1,

4More complex information than Betti numbers, such as representative cycles of the generators of the
homology group, may also be computed by a variant of Gaussian elimination.
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Figure 6: Illustrative example for persistent homology: the topological space is the 2D
plane and the filter function is the peaks function in MATLAB.

(a) t = −0.06, a new com-
ponent is born (the patch in
the center).

(b) t = 0.41, the new com-
ponent dies. A new hole is
born at almost the same time
(t = 0.3).

(c) t = 2.25, a new hole (on
the right) is born.

(d) t = 3.59, the new hole
dies.

Figure 7: Sublevel sets and their homologies. We draw the continuous sublevel sets
whereas the persistence is computed through the simplicial complex.

10



namely, the simplex-ordering of K with regard to f . This is the order in which sim-
plices enter the sublevel set f−1(−∞, t] as t increases. Any sublevel set is a subcom-
plex, denoted as Ki, which exactly σ1, · · · , σi as its simplices. The nested sequence of
sublevel sets

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

is called a filtration5 of K. Let fi = f(σi) and f0 = −∞, Ki = f−1(−∞, fi].
For any 0 ≤ i < j ≤ m, the inclusion mapping of Ki into Kj induces a group

homomorphism of the corresponding homology groups,

F i,jd : Hd(Ki)→ Hd(Kj).

A homology class, h, is born at the time fi if h ∈ Hd(Ki) but h /∈ img(F i−1,i
d ).

Given h is born at fi, h dies at time fj if F i,j−1
d (h) /∈ img(F i−1,j−1

d ) but F i,jd (h) ∈
img(F i−1,j

d ). Any class in the coset h+ img(F i−1,i
d ) is born at fi and dies at fj .

The persistence of a homology class is defined as the difference between its death
and birth times, which quantifies the significance of the feature. Not all the persistent
homology classes die. Those which never die are essential classes, which correspond to
nontrivial homology classes ofK. An essential homology class has the +∞ death time,
and thus, an infinite persistence. For example, in the example of Figure 6, there are
three 0-dimensional persistent classes. Only one of them has infinite persistence and
the other two are relatively less significant and eventually die. The three 1-dimensional
persistent classes also have different significances, measured by their persistences. In
next section, we will discuss this in further detail.

An essential justification of the usefulness of persistence is its stability [19]. It has
been proved that for a given topological space, the difference between the persistent
homologies of two separate filter functions is upper bounded by the difference between
the filter functions, as measured by the sup-norm. The distance between persistent
homologies is defined as the distance between their persistence diagrams, which will
be introduced in the next section. In a recent work [20], restrictions on the space and
filter functions have been relaxed. Furthermore, the stability has been extended to two
different topological spaces, e.g. a manifold and its finite sampling.

The definition of persistent homology can be naturally extended to a general topo-
logical space with mild assumptions. The stability guarantees that the persistence of
a general topological space filtered by a scalar function can be approximated by the
persistence of its finite approximation (triangulation of the space and finite sampling of
the filter function).

2.8 The Persistence Diagram and Barcodes
The persistent homology can be visualized and studied using a persistence diagram, in
which each homology class corresponds to a point whose x and y coordinates are its
birth and death times, respectively. Its persistence is equal to its vertical or horizontal

5It is worth noting that in fact, the theory of persistent homology applies to any filtration, not only those
which are derived from the sublevel set structure of a function.
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distance from the diagonal. Important features correspond to points further away from
the diagonal in the persistence diagram. Please see Figure 8(a) for the persistence
diagram of the previous example. We plot 0-dimensional and 1-dimensional persistent
classes with dots and crosses, respectively. From the diagram, we can see that there are
two important persistent classes, corresponding to the component of the space itself,
and the hole which is sealed up very late (when t = 8.11). For convenience, persistent
classes with infinite death time (essential) are plotted on a horizontal line, whose y
coordinate is infinity (the thickened line in the figure).

Formally, the persistence diagram includes all the points corresponding to persis-
tent homology classes, as well as the diagonal line. It may be possible that several
classes are born and die at the same time; thus, the points in the persistence diagram
are assigned integer weights, according to their multiplicities. The persistence diagram
has been proven to be stable to changes in the filter function [19]. This stability of per-
sistence implies that the persistence diagram remains almost the same if we introduce
noise into the filter function (Figure 8(c)).

Alternatively, we could plot the life intervals of persistent classes in the real line.
For a persistent class, the birth and death time are the start and end points of the inter-
val. We call this representation a persistence barcode. See Figure 8(b) for the persis-
tence barcode representation of the persistent homology in the preceding example. 0-
dimensional classes (resp. 1-dimensional) are drawn in solid (resp. dashed) lines with
round (resp. square) marks on the start and end points. The essential 0-dimensional
class has no death time.

2.9 Computing Persistence
Edelsbrunner et al. [1] devised an O(n3) algorithm to compute the persistent homol-
ogy. Its inputs are a simplicial complex and a filter function f , and its outputs are the
birth and death times of all the persistent homology classes. The persistence algorithm
for general spaces was developed in [17], which also explains the relationship of this
algorithm to Gaussian elimination. A final version of this algorithm is contained in
[21].

To explain the computation of persistence, we follow the exposition of [3, 10]
which unifies boundary matrices of different dimensions into one overall incidence
matrix D. Rows and columns of D correspond to simplices of K, indexed in the
simplex-ordering. An entry of D is 1 if and only if its corresponding entry is 1 in
the corresponding boundary matrix. The algorithm performs column reductions on D
from left to right. Each new column is reduced by addition with the already reduced
columns, until its lowest nonzero entry is as high as possible.

More specifically, during the reduction, record low(i) as the lowest nonzero entry
of each column i. To reduce column i, we repeatedly find column j satisfying j < i
and low(j) = low(i); we then add column j to column i, until column i becomes a
zero column or we cannot find a qualified j anymore. If column i is reduced to a zero
column, low(i) does not exist. This is equivalent to reducing each boundary matrix into
a canonical form, whose nonzero columns all have different lowest nonzero entries, and
thus are linearly independent. It can be shown that while the order of reduction steps
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(a) The persistence diagram. (b) The persistence barcode.

(c) Noise is introduced.

Figure 8: Persistence diagram, barcode and the filter function with noise.
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and the reduced matrix are not unique, the pairs – formed by grouping each column
with its lowest nonzero entry – are unique.

The reduction of D can be written as a matrix multiplication,

R = DV, (1)

whereR is the reduced matrix and V is an upper triangular matrix. The reduced matrix
R provides rank(D) many pairs of simplices, (σi, σj) : low(j) = i. In such a pair,
we say σj is paired on the right, σi is paired on the left. Each simplex appear in at
most one pair, either on the left or on the right (cannot be both). For simplices that
are not paired with any other simplex, we say they are paired with infinity: (σk,∞).
Simplices paired on the right are negative simplices. Simplices paired on the left, with
other simplices or with infinity, are positive simplices.

A pair (σi, σj) corresponds to a persistent class, whose birth and death time are
fi = f(σi) and fj = f(σj), respectively. That is, positive simplices give birth, while
negative simplices cause death. A pair (σk,∞) corresponds to an essential class, whose
birth time is fk = f(σk).

The reduction is completely recorded in the matrix V . Columns of V corresponding
to positive simplices form bases of cycle groups. Columns corresponding to positive
simplices paired with +∞ are cycles representing essential classes and form homology
cycle bases.

3 Applications to Computer Vision
In this section, we sketch out applications of the algebraic topological apparatus from
the previous section to problems in computer vision and image processing. We focus on
four illustrative applications: computation of shape signatures, the statistics of natural
images, noise reduction, and image segmentation. In the case of the latter two, we treat
them simultaneously, as the topological treatments of the two problems are closely
related. For each of the problems of shape signatures and natural image statistics,
we describe the technique of a single paper; in the case of noise reduction and image
segmentation, we describe the results of a number of papers, as these latter problems
have received somewhat more treatment in the still nascent literature.

3.1 Shape Signatures
A shape signature is a compact representation of the geometry of an object. Ideally, a
signature should be the same for all of the objects within a particular class of objects.
For example, if the class is the set of objects which are rigid motions (rotations plus
translations) of a given smooth template curve in the plane, one might choose the cur-
vature function as a signature. This is because the curvature function is equal for all
objects in the set, and is different from the curvature function for an object from any
other such set. However, the curvature function has problems: it amplifies noise, and it
is not necessarily the case that two objects which have perceptually similar shapes will
have similar curvature functions. A more relevant goal for computer vision, then, is to
think in terms of broader classes of objects, and to find signatures which are similar
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within a class of interest, and as dissimilar as possible between classes, where similar-
ity is measured by a particular distance function on signatures. For a survey of shape
signatures, see [22, 23] and references therein.

In this section, we review the work of Collins et al. [24, 25] on shape signatures.
The method presented in this work has the advantage that it is applicable to mani-
folds of any dimension; and with small modifications, to non-manifold spaces as well.
Before delving into the details of this method, a natural question may arise: is the ho-
mology, on its own, sufficient to act as a shape signature? The answer is no, for two
reasons. The first reason is that homology groups are sensitive to topological noise: as
we have already seen in Figure 1, adding a small handle to a surface will completely
change the homology of that surface. However, as we have noted, persistence is able
to deal neatly with this problem. Thus, we may wonder whether persistent homology
– with an appropriate filtration – is sufficient to act as a shape signature. The answer
again is no, and this is the second reason homology (and persistent homology) is in-
sufficient: homology is too coarse a description of an object, as very different objects
may have the same or similar homology groups. (This issue was also illustrated in
Figure 1.) The key to the method of Collins et al. is to augment the underlying space to
create a geometrically more informative space, and then to use the tools of persistence
to compute signature of this space. We note in passing that [21] also used the notion of
deriving a space, augmented with geometric data, for the purpose of finding geometric
descriptions of topological features.
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Fig. 5. X ⊂ R3 is the boundary of the positive octant. We show the fibers at three types of points.

(3) Corner point: T (X)(0,0,0) is the union of three circles. The circles, shown in Fig-
ure 5(c), intersect pairwise at pairs of antipodal points. T (X) contains the fiber
at the corner point as a deformation retract, so they have the same homotopy
type.

Example 3.4 (cone). Let X denote the cone given by z2 = x2 + y2, and z ≤ 0.
We would like to distinguish the cone point at the origin from the other regular
points using the tangent complex. Every regular point p is smooth, so the fiber
T (X)p is a full circle. In fact, two regular points that lie on the same line through
the origin have the same fiber, as shown in Figure 6. The fiber at the origin consists
of the union of all circles occurring at the regular points, or equivalently, the set of
points (x, y, z) in S2 with |z| ≤

√
2

2 . This set is homeomorphic to an annulus, which
is homotopy equivalent to a circle, as shown in Example 2.3. Therefore, we cannot
distinguish the cone point from the regular points using the tangent complex T (X).

The features detected by homology of the tangent complex are sharp features:
they are unaffected by smooth diffeomorphisms of the ambient space Rn. How-

Fig. 6. Bottom half of cone x2 + y2 = z2. The fiber Tδ(X)p at each smooth point p is a full circle

(left). These fibers sweep out an annulus (right), which is the fiber at the origin.

place a vertex in V for each interval in B1 [ B2: After

sorting the intervals, we scan the intervals to compute all

intersecting pairs between the two sets [28]. Each pair

ðI ; JÞ 2 B1 
 B2 adds an edge with weight jI \ Jj to E.

Maximizing the similarity is equivalent to the well-

known maximum weight bipartite matching problem. In

our software, we solve this problem with the function

MAX_WEIGHT_BIPARTITE_MATCHING from the

LEDA graph library [29,30]. We then sum the dissim-

ilarity of each pair of matched intervals, as well as the

length of the unmatched intervals, to get the distance.

4. Algebraic curves

Having described our methods for computing the

metric space of barcodes, we examine our shape

descriptor for PCDs of families of algebraic curves.

Throughout this section, we use a neighborhood of k ¼

20 points for computing fibers and estimating curvature.

4.1. Family of ellipses

Our first family of spaces are ellipses given by the

equation x2

a2 þ
y2

b2 ¼ 1: We compute PCDs for the five

ellipses shown in Fig. 4 with semi-major axis a ¼ 0:5 and

semi-minor axes b equal to 0.5, 0.4, 0.3, 0.2, and 0.1,

from top to bottom. To generate the point sets, we select

50 points per unit length spaced evenly along the x- and

y-axis, and then project these samples onto the true

curve. Therefore, the points are roughly Dx ¼ 0:02

apart. We then add Gaussian noise to each point with

mean 0 and standard deviation equal to half the inter-

point distance or 0.01. For our metric, we use a scaling

factor o ¼ 0:1: To determine an appropriate value for �
for computing the Rips complex, we utilize our rule-of-

thumb: Eq. (2) from Section 3.2. The maximum

curvature for the ellipses shown is kmax ¼ 50; so � �
0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 52

p
=2 � 0:05: This value successfully connects

points with close basepoints and tangent directions,

while still keeping antipodal points in the individual

fibers separated.

4.2. Family of cubics

Our second family of spaces are cubics given by the

equation y ¼ x3 � ax: The five cubics shown in Fig. 5

have a equal to 0, 1, 2, 3, and 4, respectively. In this case,

the portion of the graph sampled is approximately three

by three. In order to have roughly the same number of

points as the ellipses, we select 15 points per unit length

spaced evenly along the x- and y-axis, and project them

as before. The points of P are now roughly 0.06 apart.

We add Gaussian noise to each point with mean 0 and

standard deviation half the inter-point distance or 0.03.

For our metric, we use o ¼ 0:5; primarily for aesthetic

reasons as the fibers are then more spread out. The

maximum curvature on the cubics is kmax � 8; and our

rule-of-thumb suggests that we need � � 0:4: However,

� ¼ 0:2 is sufficient in this case.

5. Extensions

In Section 3, we assumed that our PCD was sampled

from a closed smooth curve in the plane. Our PCDs in

the last section, however, violated our assumption as

both families had added noise, and the family of cubics

featured boundary points. Our method performed quite

well, however, and naturally, we would like our method

to generalize to other misbehaving PCDs. In this section,

we characterize several such phenomena. For each

problem, we describe possible solutions that are restric-

tions of methods that work in arbitrary dimensions. In
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well, however, and naturally, we would like our method
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we characterize several such phenomena. For each
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Figure 9: Two visualizations of the tangent complex. Left: the space is the blue cone,
and the unit tangent vectors, which augment each point, are visualized as red circles.
Middle and Right: the space is circle, here represented as a point cloud (middle); in this
1-dimensional case, the tangent complex can be represented explicitly (right). (Left fig-
ure taken from [24]. Copyright c©2005 World Scientific. Reprinted with permission.
All rights reserved. Middle and right figures taken from [25]. Copyright c©2004 Else-
vier. Reprinted with permission. All rights reserved.)

We begin by describing the augmented space. Let X be the space of interest, which
is a subset of Rn. Define T 0(X) ⊂ X× Sn−1 as

T 0(X) =
{

(x, ξ)
∣∣∣∣limt→0

d(x+ tξ,X)
t

= 0
}

Then the tangent complex of X, T (X), is the closure of T 0(X). In the case of a man-
ifold, the tangent complex is similar to the tangent bundle of the manifold6 – that is,

6Though not exactly the same, due to the use of unit vectors Sn−1 in the definition of the tangent com-
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each point is augmented with the set of unit tangent vectors to the manifold at that
point. Thus, for example, in the case of a smooth surface living in R3, each point is
augmented by a circle of tangent vectors, see Figure 9 (left). In the case of a smooth
closed curve, each point is augmented by exactly two vectors (i.e., the two elements of
S0), and the tangent complex can be visualized more explicitly, see Figure 9 (middle
and right). The case of non-manifold behaviour is somewhat different. If a surface has
a crease – e.g. imagine two planes meeting in a line – then at the crease, each point
is augmented with not one, but two circles of tangent vectors.7 See Figure 10 for an
illustration.
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Fig. 5. X ⊂ R3 is the boundary of the positive octant. We show the fibers at three types of points.

(3) Corner point: T (X)(0,0,0) is the union of three circles. The circles, shown in Fig-
ure 5(c), intersect pairwise at pairs of antipodal points. T (X) contains the fiber
at the corner point as a deformation retract, so they have the same homotopy
type.

Example 3.4 (cone). Let X denote the cone given by z2 = x2 + y2, and z ≤ 0.
We would like to distinguish the cone point at the origin from the other regular
points using the tangent complex. Every regular point p is smooth, so the fiber
T (X)p is a full circle. In fact, two regular points that lie on the same line through
the origin have the same fiber, as shown in Figure 6. The fiber at the origin consists
of the union of all circles occurring at the regular points, or equivalently, the set of
points (x, y, z) in S2 with |z| ≤

√
2

2 . This set is homeomorphic to an annulus, which
is homotopy equivalent to a circle, as shown in Example 2.3. Therefore, we cannot
distinguish the cone point from the regular points using the tangent complex T (X).

The features detected by homology of the tangent complex are sharp features:
they are unaffected by smooth diffeomorphisms of the ambient space Rn. How-

Fig. 6. Bottom half of cone x2 + y2 = z2. The fiber Tδ(X)p at each smooth point p is a full circle
(left). These fibers sweep out an annulus (right), which is the fiber at the origin.

Figure 10: The tangent complex for non-manifolds. Left: where the space is a 2-
manifold, each point is augmented by a single circle of unit tangent vectors. Middle
and right: where there is non-manifold behaviour, the space may be augmented by
more than one circle of unit tangent vectors. (Figures taken from [24]. Copyright
c©2005 World Scientific. Reprinted with permission. All rights reserved.)

In order to apply the tools of persistent homology, we will need a filter function for
the space T (X); ideally, the filter function should be geometric. Let us begin by focus-
ing on the case when X is a curve, and consider the curvature κ(x) at each point x ∈ X.
For any point in the tangent complex, t = (x, ξ) ∈ T (X), we extend the curvature from
the curve itself to the tangent complex in the natural way, κ(t) = κ(x, ξ) ≡ κ(x). Then
we may use the curvature as our filtration function. In the case of curves, this has the
effect of focusing on the flat parts of the curve first, while adding in increasingly more
curvy segments as we increase the value of κ. This idea is illustrated in Figure 11 (mid-
dle column), for a family of ellipses. Note the way in which the ellipses with different
eccentricities have different looking filtered tangent complexes; while the homology
of the original ellipses are equivalent, the persistent homologies of these augmented
spaces will be quite different, as desired. To extend the definition of this filtration to ar-
bitrary manifolds – and indeed, arbitrary spaces – one may, for each t = (x, ξ), define
a circle of second order contact (akin to a classical osculating circle). The reciprocal of
the radius of this circle gives an analogue to the curvature, which we may then use as a
filter function. This quantity is essentially the sectional curvature at the point x in the
direction ξ (though it is defined in [24, 25] to apply to non-manifold spaces as well).
The interested reader is referred to [24, 25] for further details.

Finally, the shape signature for the space X is found by computing the persistent

plex.
7In fact, the space T 0(X) does not contain two circles of tangent vectors at a crease point; however,

T (X), which is the closure of T 0(X), does.
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Figure 11: The persistence barcodes of shapes. Left: various ellipses, represented as
point clouds. Middle: the filtered tangent complexes of these point shapes. The filter
function is represented using colour, where the colour code is given at the bottom of
the figure. Right: the corresponding barcodes (dimension 0), computing using persis-
tent homology. (Figures taken from [25]. Copyright c©2004 Elsevier. Reprinted with
permission. All rights reserved.)

homology of the filtered tangent complex. This leads to a set of persistent barcodes,
one set for each dimension. Recall, from Section 2.7, that the barcodes consist of
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intervals of the real line: the beginning of the interval is the birthtime and the end of
the interval is the deathtime of the feature in question. These barcodes can be visualized
by stacking the intervals, see Figure 11 (right column).

In order to compare two shapes, the barcode of a given dimension of the first shape
is compared with the barcode of the same dimension of the second shape. The metric
between barcodes is given by a matching algorithm: the cost of matching two inter-
vals is given by the length of their symmetric difference, while the cost of unmatched
intervals is simply their length. The distance between two barcodes is then given by
the cost of the minimal matching; this distance, which can be computed by a bipartite
graph matching algorithm, can be shown to be a metric, as desired.

We briefly mention some of the implementation details that are necessary for com-
puting this signature when the shape of interest is given by a point cloud, which is a
common case in practice. The tangent complex can be computed by using PCA on
points in the neighbourhood of a given point (taken by the k nearest neighbours for
a parameter k); if the space is not smooth, this information can be backed out of the
eigenanalysis of the PCA, though this is more complicated. To compute the curvature
at a given point, a circle of second order contact is fit to the data. To compute the
persistence, a simplicial complex is first computed as the Cech complex, which is the
nerve of the set of balls where each ball (of a fixed radius ε) is centered around a point
in the tangent complex. That is, the complex is constructed as follows: where two balls
intersect, an edge is placed; where three balls intersect, a triangle is placed; and so on.
This complex can be shown to be homotopy equivalent to, and hence have the same
homology as, the the union of balls [26]. Finally, the standard persistent homology al-
gorithm (see Section 2.9) can be applied to this simplicial complex. For further details,
the reader is referred to [24, 25].

Results of applying the algorithm to the problem of computing shape signatures of
a set of handwritten letters are shown in Figure 12. Quite obviously, there are mature
technologies available for the optical character recognition (OCR) problem, and this
technique does not outperform them; nonetheless, the results illustrate the power of the
approach. In this example, there are eight letters, of which there are ten examples of
each. In the experiment, each shape is assigned the barcodes described above, as well
as extra barcodes derived from other filtrations; the purpose of these other filtrations is
to increase the power of discrimination between shapes. Two shapes are then compared
by computing the distance between each pair their corresponding barcodes, and taking
a weighted sum of these distances as the overall distance (see [25] for details). The
resulting distance matrix for these 80 elements is shown in Figure 12: clearly, the
shape signatures have the ability to capture the shape characteristics of the handwritten
letters.

We conclude this section by mentioning the very recent work on persistence-based
shape signatures [27]. This work shows shapes can be endowed with certain quantities
based on persistent homology, such that these quantities are stable when the shape
undergoes a small change as measured by the Gromov-Hausdorff distance. Since the
Gromov-Hausdorff distance is currently quite popular in the shape signature literature,
this work may prove quite important.
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distances between respective barcodes of two shapes. We

then combine the information from the different

barcodes for shape comparison.

In the rest of this section, we demonstrate our

framework through the letter classification example.

We must emphasize, however, that the key aspect of our

framework is its generality: it does not rely on detailed

ad-hoc analysis of a particular classification problem,

but rather on a family of signatures that are potentially

useful for solving other problems. Our methods also

have a conceptual nature that extend naturally to higher

dimensional settings.

We begin by extracting information from the topol-

ogy of the letters. As already discussed, the letters are

partially classifiable using the number of loops or b1: We

compute b1 for each letter via a simple method that does

not require a filtration, although we may employ more

robust methods for its calculation. We include all points

of the PCD and use balls of radius 0.08 to construct

a complex. We then create a mask matrix, shown in

Fig. 13(b), where the distance between two shapes is 0 if

they have identical b1 and infinite otherwise. Observe

that the mask allows us to distinguish ‘D’ from ‘V’, and

‘O’ from ‘U’, ‘C’, and ‘I’. We now apply this mask to the

matrix of tangent information in Fig. 13(a) that we

obtained in the last section to get Fig. 13(c). Our new

matrix classifies ‘D’, ‘V’, and ‘I’ correctly, but still has

two blocks that group ‘A’ and ‘R’, and ‘U’, ‘C’, and ‘I’,

respectively.

We next examine separating ‘U’ and ‘C’. An

important characteristic of our metric is that it is

invariant under both small elastic and large rigid

motions. Since a ‘C’ is basically a ‘U’ turned on its

side, we should not expect any topological method to

separate them. However, as the alphabet illustrates,

there are situations where it is necessary to distinguish

between an object and a rotated version of itself. One

way to do so is to employ a directional Morse function

and examine the evolution of the excursion sets X f ¼

fðx; yÞ 2 X j y4f g: As with all our techniques, this

method for directional distinction extends in an obvious

way to higher dimensional point clouds. In this case, we

consider a vertical top-down filtration. Note that

b0ðUf Þ ¼ 2 while b0ðCf Þ ¼ 1 for most values of f.

Therefore, the corresponding b0-barcodes allow us

to distinguish between ‘U’ and ‘C’, as seen in Fig. 14.

This filtration gives us the distance matrix shown in

Fig. 13(d).

Our final filtration employs a horizontal right-left

Morse function. This filtration sharpens the distinction

between the pairs f‘A’; ‘R’g and f‘C’; ‘I’g: We show the

resulting b0-barcodes for representatives of each pair in

Fig. 15, and the resulting distance matrix is shown in

Fig. 13(e).

Having described our filtrations, we combine the

multiple signatures into a single measure, depicted by

the distance matrix in Fig. 13(f). This measure is based

on the four invariant signatures:

(1) b0-barcodes of the tangent complex, filtered by

curvature, in Fig. 13(a),

(2) b1 of the letters in Fig. 13(b),
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Fig. 14. Filtering the original point clouds from top to bottom

gives different b0 barcodes for ‘C’ and ‘U’.

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Distance matrices for 10 scanned instances of the

letters ‘A’, ‘R’, ‘D’, ‘V’, ‘U’, ‘C’, ‘I’ and ‘O’. We map the

distance between each pair to gray-scale. (a) b0-barcodes for the

tangent complex T(P) filtered by curvature, (b) a mask matrix,

where distance is 0 if the letters have the same b1; and 1;
otherwise, (c) the combination of (a) and (b), (d) b0 of original

space filtered top-down distinguishes ‘U’ from ‘C’, (e) b0 of

original space filtered right-left distinguishes pairs f‘A’; ‘R’g and

f‘C’; ‘T’g; (f) the combination of all four distance functions

distinguishes all letters.
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Figure 12: The distance matrix for the 80 letters (10 examples of each of 8 letters);
dark represents a small value, and light represents a large value. (Figures taken from
[25]. Copyright c©2004 Elsevier. Reprinted with permission. All rights reserved.)

3.2 Statistics of Natural Images
The problem of characterizing the statistics of natural images is a traditional topic in
computer vision [28, 29, 30, 31, 32, 33]. The goal is to find the basic “rules” which
describe images of natural scenes; these rules, once found, serve two purposes. The
first purpose is an engineering one: the rules serve as a prior on images, which can be
used in probabilistic or energy formulations of a variety of problems. For example, in
the case of the so called Patch Transform [34], the goal is to reassemble the patches
of an image in a jigsaw puzzle-like fashion while satisfying some user constraints.
The natural image statistics provided by the Gaussian Mixture Model Field of Experts
model [33] are used to ensure that the assembly process leads to a sensible image. In
contrast to such an engineering view, the second purpose of the study of image statistics
is a scientific one. In this setting, the characterization of natural image statistics is
interesting in its own right, and can lead to information about the way in which animals
process visual data.

In this section, we review the work of Carlsson et al. [35], which uses a persistent
homological approach to characterizing natural image statistics. The data used in this
paper is the same as that of Lee et al. [32], which we briefly review.8 A collection
of more than 4, 000 images of natural scenes is used. From each image, 5, 000 3 × 3
image patches are selected randomly, of which the top 20% with highest contrast in
log-intensity are retained. These leads to a total collection of a bit more than 4 million
patches.

More specifically, the process of choosing the top 20% of the image patches, per
base image, works as follows. First, each 3× 3 patch is represented as a 9-dimensional
vector. Second, the elementwise-logarithm of each vector is taken. Third, for each
vector, the mean of the vector is subtracted off of each element of the vector. Fourth,
if the result of the prior computation is the vector v, then the so-called D-norm of v,

8In fact, [32] uses both range and natural images; here, we focus only on the natural images, as these are
what is used in [35].
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i.e.
√
vTDv, is computed; D is a particular 9 × 9 symmetric positive definite matrix.

Only the 20% of vectors with the highest D-norm are retained. Finally, each vector v
is normalized by the D-norm, i.e. v ← v/

√
vTDv.

Examining this process, we see that the in the first and second steps, the vectors live
in R9. In the third step, after the mean has been subtracted off, the vectors live in an
8-dimensional subspace of R9. In the final step, after normalization, the transformed
vectors live in S7, the 7-sphere.

In this setting, the goal is thus to characterize the statistics of the dense point cloud
lying on S7. In order to do so, a filter function related to the density of the points
is introduced. For each point x in the point cloud, let δk(x) be the distance from
x to its kth nearest neighbour. Thus, δk(x) is inversely related to the density: the
smaller is δk(x), the more densely represented is the area around a point. Setting the
parameter k to have a small value results in a focus on the fine-scale structure of the
data; whereas for k large, the coarse-scale structure of the point cloud becomes more
apparent. For a fixed k, the function δk(x) is used as the filter function, with one
caveat: the filtration ends when we have accumulated a fraction T of the points, where
T is usually taken as 0.25. The reason for this latter restriction is that the high density
points (i.e., the fraction T of points with the smallest values of δk(x)) are said to form
a “stable core,” which best represent the image statistics. Finally, to speed up the
computation, 5, 000 points at random are sampled from the data, and the persistence
computation is performed on this subset. Many random samplings are taken to ensure
consistency.

Given this filter function, what statistics are discovered? The first important dis-
covery is that with a k value of 300 – that is, a large k value corresponding a relatively
coarse scale – there is a single long-lived 1-dimensional homology class, see Figure
13 (top). To what does this circle on S7 correspond? An examination of the patches
making up this circle indicates that they are patches with a light region on one side of
the patch, and a dark region on the other: that is, they are edges. The circular structure
turns out to be derived from the angle of the line separating the dark and the light re-
gions; the angle can effectively take on all value from 0 to π. See Figure 13 (bottom)
for an illustration.

The second important discovery uses a k value of 25, for a more fine scale analysis.
At this scale, it is observed that there are 5 long-lived generators of the 1-dimensional
homology group, see Figure 14 (top). There are several structures which can give
rise to β1 = 5 on the 7-sphere; on examination of the data, it turns out that the relevant
structure is a series of three interlocking circles, see Figure 14 (bottom). The first circle
is the same as that already discovered at the coarse scale; the other two each intersect
the original circle twice, but are disjoint from each other. It turns out that these two
new circles represent patches which include three stripes, in which the stripes are not
necessarily monotonic by grayscale, see Figure 15. Because they intersect the original
circle, they include the edge patches described above (which are three stripe patterns,
but where the stripes are monotonic by grayscale); but they also include non-edge
patches, such as a patch consisting of two dark stripes sandwiching a light stripe. What
is the difference between the two new circles? One circle represents horizontal stripes,
and the other vertical stripes. Note that these horizontal and vertical stripes are not
due to pixellization effects – if the images are all rotated by an angle of π/4, the true
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ǫ

Figure 5. The H1 barcode for a random sampling of 5000 points
of M[300, 25] yields a single generator. This generator indicates
the nodal line between a single light and single dark patch as being
the dominant feature of the primary circle in M.

hard to visualize? While the work of Carlsson et al. is very recent, there are several
applications of the topological approach to data analysis which argue in favor of
the proposition that homological structures in high dimensional data sets are of
scientific significance. Besides the Mumford data set reviewed here, persistent ho-
mology computations are being applied to geometric features of curves (e.g., optical
character recognition) [5] and visual cortex data from primate experiments [4].

With regards to the natural image data, it is instructive to think of the persistent
homology ofM as something akin to a Taylor approximation of the true space. The
reduction of the full data set to an S7 via projection is really a normalization to
eliminate the zero-order (or “single patch”) terms in the data set. Following this
analogy, the H1 primary generator fills the role of a next term in the expansion of the
homotopy type of the data set, collating the nodal curve between two contrasting
patches. The secondary circles, interpolating between single and dual nodal curves,
act as higher-order terms in the expansion, in which horizontal and vertical biases
arise.

It is here that one gets deeper insight into the data set. Inspired by the meaning
of the H1 barcodes of M, further investigation reveals what appears to be an
intrinsic bias toward horizontal and vertical directions in the natural image data, as
opposed to an artifact of the (right) angle at which the camera was held: [3] reports

Figure 13: Coarse scale structure of the image statistics, corresponding to k = 300.
Top: at this scale, the persistence barcode indicates that the data has one long-lived
1-dimensional homology class. Bottom: this single circle in S7 corresponds to edges,
with the angle in the circle giving the angle of the edge. (Figures taken from [11].
Copyright c©2008 Robert Ghrist. Reprinted with permission. All rights reserved.)

horizontal and vertical directions, represented as diagonals in this coordinate system,
are still discovered [35].

Two more points deserve mention. First, more complex information can also be
gleaned from the data, by looking at higher-order homology groups. For example, in
looking at the 2-dimensional persistent homology, one finds a Klein Bottle structure.
This structure has an explanation in terms of the underlying patches, but one which is
somewhat involved to explain. The interested reader is referred to [35, 11] for a more
in depth exposition. Second, this type of analysis has not been limited to natural image
statistics; in a recent paper [36], Singh et al. have applied the same set of techniques to
visual cortex data from experiments on primates. The latter should be of interest to the
biological vision community.

3.3 Noise Reduction and Segmentation
The problem of noise reduction in images is an old one. The literature on this subject is
vast, so no attempt will be made to survey it here; instead, let us simply note that classi-
cal approaches tend to be based on ideas from signal processing, estimation theory, and
diffusion. In some instances, there are distinct features which one wishes to preserve
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Figure 6. The H1 barcode for M[15, 25] reveals five persistent
generators. This implies the existence of two secondary circles,
each of which intersects the third, large-k, primary circle twice.

Figure 7. The secondary generators of H1 for M[15, 25] have
an interpretation as regulating changes from dual-patch to triple-
patch high contrast regions in horizontal and vertical biases respec-
tively.

that a repetition of the experiment with a camera held at a constant angle π/4 yields
a data set whose secondary persistent H1 generators exhibits a bias towards true
vertical and true horizontal: the axis of pixellation appears less relevant than the
axis of gravity in natural image data.

Is there any predictive power in the barcodes of the data set? Recent progress
[3] demonstrates the insight that a persistent topology approach can yield. The
barcodes for the second persistent homology H2 are more volatile with respect to

Figure 14: Fine scale structure of the image statistics, corresponding to k = 25.
Top: at this scale, the persistence barcode indicates that the data has five long-lived
1-dimensional homology classes. Bottom: β1 = 5 results from a series of three inter-
locking circles, in which the first circle is the coarse scale circle, while the other two
each intersect the original circle twice, but are disjoint from each other. (Figures taken
from [11]. Copyright c©2008 Robert Ghrist. Reprinted with permission. All rights
reserved.)
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Figure 6. The H1 barcode for M[15, 25] reveals five persistent
generators. This implies the existence of two secondary circles,
each of which intersects the third, large-k, primary circle twice.

Figure 7. The secondary generators of H1 for M[15, 25] have
an interpretation as regulating changes from dual-patch to triple-
patch high contrast regions in horizontal and vertical biases respec-
tively.

that a repetition of the experiment with a camera held at a constant angle π/4 yields
a data set whose secondary persistent H1 generators exhibits a bias towards true
vertical and true horizontal: the axis of pixellation appears less relevant than the
axis of gravity in natural image data.

Is there any predictive power in the barcodes of the data set? Recent progress
[3] demonstrates the insight that a persistent topology approach can yield. The
barcodes for the second persistent homology H2 are more volatile with respect to

Figure 15: Analyzing the fine scale structure. The two new circles represent patches
which include three stripes, in which the stripes are not necessarily monotonic by
grayscale. (Figures taken from [11]. Copyright c©2008 Robert Ghrist. Reprinted with
permission. All rights reserved.)

in the image. For example, in terrain images, it is critical to preserve the large peaks,
valleys, and passes, which correspond to maxima, minima, and saddles, respectively;
see Figure 16. In ordinary images, it may also be useful to preserve “important” critical
points, as this allows the image to retain a certain sharpness while noise is removed.
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simplices of {P}, Cv and Cw can only grow in G, i.e Cv ⊆ C ′
v and Cw ⊆ C ′

w. Suppose for the purpose of
contradiction that e is not paired with v in G, and that v is the lowest vertex of F \ {P} whose pairing is
di�erent in G. Then the lowest vertex u of C ′

v in G is not v. If u ∈ Cv, u ∈ {P} (its value changed). Since
the simplices of {P} are paired with vertices of {P} in G (they form local pairs), e cannot be paired with u,
so it must be paired with the lowest vertex w′ of C ′

w which is at least as low as w and then lower than v.
For the same reason as before, w′ /∈ {P}. w′ is then a vertex of F \ {P} whose pairing is di�erent in G and is
lower than v which contradicts our hypothesis. Assuming now that u ∈ C ′

v \ Cv, the path from v to u must
contain an edge of C ′

v whose f -value is larger than the f -value of e in F (otherwise that path would already
be in Cv). Consider the edge η on this path with largest f -value. This edge must be an edge of {P}. It
merges in F two components, one contains w and the other one contains u. So η must be paired in F with
a vertex ν lower than u or w. But this implies [v, e]F ⊆ [ν, η]F and contradicts that P is closed by inclusion.

D Application to the topological simpli�cation of terrains

We wrote an implementation of our algorithms using the python language. It is specialized to the topological
simpli�cation of terrains. The terrain is a triangulated 2D grid whose simplices are assigned a height value in
[0, 1]. The terrain is made manifold by gluing dummy triangles from the boundary of the terrain to a dummy
vertex, thus forming a topological 2-sphere. The dummy simplices are assigned height greater that one. In
practice, this is not ideal, as the many dummy triangles and edges tend to interfere with the pairing of the
actual terrain's simplices; it would be preferable to use a single dummy 2-dimensional face whose boundary
spans the whole terrain boundary edges. Such a dummy face would become the only positive (and un-paired)
2-simplex, and would therefore not interfere with the pairing of the actual simplices. Figure 2 shows two
simpli�cations of the height function of a terrain. Additional views of the same terrain, including 3D views,
can be found at the following URL: http://www-sop.inria.fr/members/Samuel.Hornus/simplif/.

Figure 2: (This is a color �gure) Left : a 80x80 terrain. Heights range from blue (low = 0.0), through
cyan, green, yellow to red (high = 1.0). Middle: A 0.2-simpli�cation of the height function has been
computed. Right : A 1-simpli�cation of the height function has been computed. The terrain has
38396 simplices. The computation of the spanning tree took 1.32 seconds. Each computation of
the persistence pairs took roughly 2.37 seconds. Each simpli�cation step took roughly 0.41 seconds.
Timings were measured on a Core 2 duo 2.6 GHz processor.

14

Figure 16: Simplification of a terrain image. Left: the original terrain image, in which
heights range from blue (low) through cyan, green, yellow, and to red (high). Middle
and right: simplifications of the terrain image which preserve large critical points. (Fig-
ures taken from [37]. Copyright c©2009 Dominique Attali. Reprinted with permission.
All rights reserved.)

What is the connection between critical points and the homological tools that we
have thus far discussed? The answer is that the critical points of a function and the
persistent homology of that function are intimately related. In particular, the topology
of the sublevel set of the function changes whenever there is a critical point; this can
be seen in the example of Figure 7 and corresponding discussion in Section 2.7. As
we know, the persistent homology itself is defined based on the changing homology of
the sublevel sets. In fact, then, it turns out that the critical points of a function are in
two-to-one correspondence with the points of the persistence diagram. That is, every
birth time and every death time of a homological feature corresponds to a critical point
of the relevant function. (Recall that each point in the persistence diagram consists of
both a birth and death coordinate, which is why the correspondence is two-to-one.)

Note that this relationship between the homology of a space and the critical points
of a function on that space dates to Morse and his eponymous Morse Theory [38, 39].
Classical Morse Theory assumes a smooth function, which in addition satisfies a mild
genericity condition known as the Morse condition. The advantage of the persistent
homology approach is that no smoothness is assumed for the function, so that a sensi-
ble definition of critical points exists even when the underlying function is not smooth.
That is, a homological critical value [19] of a function is a value at which the homol-
ogy of the sublevel set of the function changes. This definition corresponds with the
traditional critical point (at which the derivative vanishes) for smooth functions, but is
more general. For example, it can be applied to a piecewise linear function, which is a
standard case seen in applications.

Having established the relationship between critical points and points in the persis-
tence diagram, we may now formulate the problem of feature-sensitive noise reduction
as that of removing points with small persistence from the persistence diagram, while
leaving other points in the persistence diagram alone. This has the effect of retaining
important critical points, while discarding other, less significant ones. This problem
has been addressed in the persistent homology literature, and goes under the title per-
sistence simplification. The formal problem of persistence simplification, as described
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in [40, 37] is as follows:

Definition 1 Given a topological space X and function f : X → R, a function g :
X → R is an ε-simplification of f if the two functions are close, ‖f − g‖∞ ≤ ε, and
the persistence diagram D(g) contains only those points in the diagram D(f) that are
more than ε away from the diagonal.
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Figure 17: Persistence simplification. Left: the original persistence diagram for a given
function f . Right: the persistence diagram for the ε-simplification g of the function f .
Here ε = 0.3.

It should be clear that if such a g can be found, it will have solved the problem
of feature-sensitive noise reduction, see Figure 17. Before examining algorithms for
this general problem, however, we observe an interesting connection with the seem-
ingly unrelated problem of segmentation. It will turn out that an important problem
in segmentation admits a simpler version of persistence simplification, for which an
algorithm has been developed. We will then return to a high-level discussion of results
for the more general persistence simplification problem.

3.3.1 Segmentation

The connection between persistence simplification and segmentation comes about through
the Mean Shift algorithm. In Mean Shift segmentation [41, 42, 43], each pixel in the
image is assigned a feature vector – generally speaking, colour, texture, or some com-
bination of the two, which is then often augmented by position. A non-parametric
estimate of the probability density in this feature space – the Kernel Density Estimate
(KDE) – is then constructed. Given this KDE, the image is segmented according to the
modes, or local maxima, of the KDE. In particular, each local maximum of the KDE
represents a segment of the image, and each pixel is assigned to the local maximum in
whose basin of attraction the pixel lies.

Despite its success in many applications, the Mean Shift algorithm is known to
generally yield an oversegmentation; that is, it produces too many segments. In some
applications, this is tolerable; Mean Shift is sometimes used as preprocessing for a
more sophisticated clustering algorithm, and is used simply to reduce the complex-
ity of this second algorithm. On the other hand, it would be desirable if Mean Shift
were able to yield a more precise segmentation on its own. Since Mean Shift tends to
oversegment, the results might be corrected by forcing the algorithm to produce fewer
clusters. Since each cluster corresponds to a local maximum of the KDE, the problem
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of mitigating oversegmentation is equivalent to the problem of filtering the KDE so
as to preserve the most important local maxima, while eliminating smaller ones. In
this sense, this problem is formally similar to a simpler version of the feature-sensitive
noise reduction and persistence simplification outlined above. In particular, we are
interested not in preserving all large critical points, but rather, only large local maxima.

Chazal et al. [44] present an elegant and practical method for attacking this prob-
lem. Before discussing their method, however, it is worth pointing out the contribution
of Paris and Durand [45], who also attempt to tackle this problem. The basic idea of
the paper is roughly in consonance with the approach of persistence simplification, and
is the first work, to our knowledge, to try to tackle this problem in relation to segmen-
tation. However, there are problems: the method is very “digital,” in that it attempts
to find basins of attraction and then to use a topological persistence oriented criterion
for eliminating modes, by just using the digital grid, without a true simplicial complex
(or other appropriate cell complex) underlying the analysis. The digitality proves to be
a problem, both in theory and in practice. In theory, there is not much one can prove
here; and in practice, some grid points are never classified as belonging to any basin of
attraction, and a heuristic must be used.

The method of Chazal et al. [44], by contrast, is well-founded theoretically, and
provides some nice practical properties as well. The set up is as follows. It is assumed
that the topological space X is unknown and the function f : X → R is only specified
on a finite subset L ⊂ X. The specification of L itself is entirely coordinate-free; all
that is needed is the set of pairwise distances between all points in L.9 The goal is to
compute the persistence of this sampled representation, and to simplify it, in the sense
above: to eliminate local maxima whose persistence is smaller than a given threshold.

The first contribution is to show how the persistence diagram itself may be com-
puted for the sampled representation. The Rips Complex of a finite point set L and a
positive real number δ is denoted Rδ(L) and is defined as follows. A k-simplex σ with
vertex set v0, . . . , vk ∈ L belongs to Rδ(L) if the distance between all pairs of vertices
is less than or equal to δ: d(vi, vj) ≤ δ for all i, j. It turns out that there is no value of δ
for which the homology of the Rips Complex Rδ(L) matches that of X, even for well-
sampled spaces. Instead, the relationship between a pair of Rips Complexes, Rδ(L)
and R2δ(L), is sufficient to yield the persistent homology of the function f : X → R.
The details of this procedure are highly technical, relying on many algebraic concepts,
such as persistence modules, which we do not define here. Instead we give a rough
sketch, and the interested reader is referred to [44] for the full treatment.

Well-sampling means that the subset L is an ε-geodesic sample of X, i.e. that any
point in X has a geodesic distance of less than ε from some point in L, for ε less
than 1/4 of the strong convexity radius of X (which we do not define here). If X is
well-sampled by L in the above sense, then Chazal et al. show that an approximation
to the persistence diagram of f : X → R can be computed from the function values
on L. Technically, let Lα = L ∩ f1(−∞, α] be the discrete analogue of the sublevel
set; then the persistence diagram of f and the persistence diagram of the persistent
homology module {Rδ(Lα) ↪→ R2δ(Lα)}α∈R have a bottleneck distance of at most a

9Thus, X must also be a metric space; in practice, this is never a restriction, and most relevant spaces
have even more structure, that is they are Riemannian manifolds.
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constant times δ, when δ is chosen to be greater than 2ε and less than 1/2 the strong
convexity radius of X. This result relies on an earlier result [46] which showed that the
relationship between the pair of Rips Complexes, Rδ(L) and R2δ(L), is sufficient to
provably approximate the homology of the domain X.

Note that this result on its own is quite important, as it allows for the computation
of persistence in high dimensional spaces, when an approach based on a simplicial
complex would be too expensive (note that the size of the simplicial complex generally
grows exponentially with the embedding dimension). In addition, though, the authors
show how to use this scheme to simply deal with the oversegmentation problem from
Mean Shift. First, a sampled version of Mean Shift is proposed: at any point, a steepest
ascent vector is defined by looking at the highest (by function value) point in the neigh-
bourhood of the point, where the neighbourhood is defined using 1-skeleton of the the
Rips Complex R2δ(L). The point is then moved according to this steepest ascent vec-
tor, unless the point itself is the highest point in its own neighbourhood, in which case
it is deemed a local maximum. The persistences of each such local maximum have
already been computed using the algorithm sketched in the previous paragraph. In fact,
the result of that algorithm is a diagram in which neighbouring maxima are linked.
More formally, the diagram consists of pairs (v, e), where v is a local maximum and
e is an edge of the 1-skeleton of the Rips Complex R2δ(L) that links the connected
component created by v in R2δ(L) to the one created by some higher maximum u. If
the lifespan of the connected component of v is shorter than some threshold, then the
cluster of v is merged into that of u.

This algorithm, in addition to its provable properties (under appropriate sampling),
can be shown to have a reasonable complexity. In particular, the complexity of the first
part of the algorithm, the computation of persistence, is O(n3), where n is the number
of points in L, whereas the second part is close to linear in n. Results of applying the
algorithm are illustrated in Figure 18.

3.3.2 General Persistence Simplification

As opposed to our treatment of the problems in the previous sections, in which we
focused on one particular algorithm, we will, in this case, proceed to summarize the
state of existing results in this field. This is mainly due to the fact that a somewhat larger
literature has developed to tackle the problem of persistence simplification, though
open problems certainly remain.

The first paper to introduce persistent homology [1] had already considered the
problem of persistence simplification. In this paper, the setting is purely simplicial, and
the filtration itself is given by an ordering of the simplices. An algorithm is given there
for reordering of the simplices which simplifies the persistence. The main problem
with this algorithm is that it reduces the persistence of all features; that is, all points
in the persistence diagram are moved closer to the diagonal, not just the smaller ones.
This is not really desirable, as we wish to preserve the large features as precisely as
possible, while removing the smaller ones.

Another series of papers tackle the problem of simplification of Morse-Smale com-
plexes [47, 48, 49]. Briefly, the Morse-Smale complex bears a close relationship to the
problem of Mean-Shift segmentation. The stable manifolds which are key ingredients
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Figure 1: Top row, left: a noisy scalar fieldf defined over a sampled
planar square domainX; center and right: approximations of the 0- and
1-dimensional persistence barcodes of(−f) generated by our method from
the values off at the sample points and from their approximate pairwise
geodesic distances inX. The six long intervals in the 0-dimensional barcode
correspond to the six prominent peaks off (including the top of the crater),
while the long interval in the 1-dimensional barcode reveals the ring shape
of the basin of attraction of the top of the crater. Bottom row: approximate
basins of attraction of the peaks off , before (left) and after (right) merging
non-persistent clusters, thus revealing the intuitive structure off .

settings. We also show how to find the basins of attraction
of the peaks off inside the point cloudL, and how to merge
them according to the persistence information, as shown in
Figure 1 (right). Our algorithms are based on variants [11,
12] of the celebrated persistence algorithm [16, 26]. They
can be easily implemented, have reasonable complexities,
and are provably correct. Finally, we show experimental
results in a variety of applications (Section 5): while we do
not provide definitive solutions to these problems, the results
demonstrate the potential of our method and its possible
interest for the community.

Related work. Topological persistence has already been
used in the past for the analysis and simplification of scalar
fields. The original persistence paper [16] showed how to
simplify the graph of a piecewise-linear (PL) real-valued
function f defined over a simplicial complexX in R3, by
iteratively cancelling the pairs of critical points provided
by the persistence barcode off . This approach was later
refined, in the special case whereX is a triangulated 2-
manifold, to only cancel the pairs corresponding to short
intervals in the barcode, thus removing the topological noise
up to a certain prescribed amplitude [17]. In parallel,
others have considered computing complete or simplified
representations of Morse-Smale complexes, which capture
important information about the structure of scalar fields.
Building upon the idea of iterative cancellations of pairs
of critical points, it is possible to construct hierarchies
of increasingly coarse Morse-Smale complexes from PL
functions defined over triangulated 2- or 3-manifolds [1, 5,
15, 20, 21]. All these methods are restricted to the low-

dimensional PL setting, and in this respect our work suggests
a way of extending the approach to a more general class
of spaces via finite sampling and modulo some (controlled)
errors in the output. Although finding and merging the basins
of attraction of the peaks of a scalar fieldf is simpler than
computing a full hierarchy of Morse-Smale complexes, it is
already a challenge in our context, where the knowledge off
is very weak, and where the potentially high dimensionality
of the data makes PL approximations prohibitively costly.

Another line of work in which persistence has played
a prominent role is homology inference from point cloud
data, where the goal is to recover the homological type of
some unknown compact setX ⊂ Rd from a finite setL
of sample points. Under a sufficient sampling density, the
distance toL in Rd approximates the distance toX, therefore
their persistence diagrams are close, by a stability resultof
[10]. This makes the inference of the homology ofX from
the persistence of the distance toL theoretically possible
[8, 10]. In practice, computing this distance at every point
of the ambient spaceRd is prohibitively expensive. It is then
necessary to resort to auxiliary algebraic constructions,such
as theRips complexRδ(L), defined as the abstract simplicial
complex whose simplices correspond to non-empty subsets
of L of diameter less thanδ. As proved in [9], a pair
of nested Rips complexesRδ(L) ⊆ Rδ′(L) can provably
capture the homology of the underlying spaceX, though the
the individual complexes do not. Our algebraic construction
(see Section 3) is directly inspired from this property, andin
fact our theoretical analysis is articulated in the same way
as in [9], namely: we first work out structural properties
of unions of geodesic balls, which we prove to also hold
for their nerves (also calleďCech complexes); then, using
the strong relationship that exists betweenČech and Rips
complexes, we derive structural properties for families of
Rips complexes. Note that the core of our analysis differs
significantly from [9], because our families of complexes are
built differently. In particular, the classical notion of stability
of persistence diagrams, as introduced in [10], is not broad
enough to encompass our setting, where it is replaced by a
generalized version recently proposed by Chazalet al. [6].

2 Background

Throughout the paper we use singular homology with co-
efficients in a commutative ringR, assumed to be a field
and omitted in the notations. We also use elements of Rie-
mannian geometry and of Morse theory (in Section 4.2).
Thorough introductions to these topics may be found in
[4, 22, 23].

2.1 Persistence modules and filtrations.The main alge-
braic objects under study here are persistence modules. A
persistence module is a family{Φα}α∈R of R-modules to-
gether with a family{φβ

α : Φα → Φβ}α≤β∈R of homo-

Figure 18: Segmentation. Top left: the function. Top right: the persistence barcode,
illustrating the six large local maxima. Bottom left: the results of (discrete) Mean Shift.
Bottom right: the results after merging clusters using persistence. (Figures taken from
[44]. Copyright c©2009 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved.)

in the construction of the Morse-Smale complex are essentially the same as the basins
of attraction of the modes in Mean Shift; however, the Morse-Smale complex also uses
the concept of unstable manifolds, which do not have a direct analogy in Mean Shift.
(Unstable manifolds essentially allow points to run “down the hill” instead of up; this
can be seen as performing mean shift on the negative KDE. The Morse-Smale complex
then takes intersections of stable and unstable manifolds to build up a cell complex.)
The main issue related to these results for simplification is that they are highly depen-
dent on the low-dimension of the underlying topological space; the cases of dimension
2 and 3 are considered in the previously cited papers. In many cases, clustering oc-
curs in spaces of somewhat higher dimension; for example, a common choice in image
segmentation is d = 5, where each vector comprises 3 colour and 2 spatial dimensions.

The original paper to pose the problem of persistence simplification as in Definition
1 was that of Edelsbrunner et al. [40]. In this paper, the problem was solved for
piecewise linear 2-manifolds (surface meshes); the main problem with the approach
is simply that it is very complicated, with many subcases considered. A more recent
paper of Attali et al. [37] also tackles the problem of simplification on surfaces and
provides a simple algorithm, which is relatively simple to implement, and has a low
complexity – linear in the number of simplices. Both of these papers are restricted to
the low-dimensional setting.

Finally, we note that multiple simplification algorithms are introduced and dis-
cussed in [18].
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4 Conclusions and Future Directions
In this survey, we have reviewed the new algorithms for computing with algebraic
topology, in particular those of persistent homology; and the application of these algo-
rithms to problems in computer vision and image processing. These techniques require
some effort to master, but we believe that the effort is worth it: the techniques represent
powerful new ways to attack interesting problems in vision. Furthermore, the methods
have an inherent elegance which should be appealing to many vision researchers.

We believe that this is just the beginning of the application of the new topological
ideas to image related problems. This paper ought merely to be an entryway for in-
terested researchers into the exciting new developments in computational and applied
algebraic topology. It is our hope that in five years, another survey will be required
to cover the much larger number of developments that will have taken place over that
time.
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