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Abstract. Organ segmentation is a challenging problem on which significant
progress has been made. Deformable models (DM) and graphical models (GM)
are two important categories of optimization based image segmentation methods.
Efforts have been made on integrating two types of models into one framework.
However, previous methods are not designed for segmenting multiple organs
simultaneously and accurately. In this paper, we propose a hybrid multi organ
segmentation approach by integrating DM and GM in a coupled optimization
framework. Specifically, we show that region-based deformable models can be
integrated with Markov Random Fields (MRF), such that multiple models’ evo-
lutions are driven by a maximum a posteriori (MAP) inference. It brings global
and local deformation constraints into a unified framework for simultaneous seg-
mentation of multiple objects in an image. We validate this proposed method
on two challenging problems of multi organ segmentation, and the results are
promising.

1 Introduction

Segmenting anatomical regions from medical images has been studied extensively and
it is a critical process in many medical applications. Two important categories of opti-
mization based image segmentation methods are Graphical Model (GM) based [13,1,11]
and Deformable Model (DM) based [9,3,14,12,6,10] methods. Both categories are able
to achieve satisfactory results by combining the confidence based on local evidence
such as colors and textures and the confidence based on global evidence such as the
smoothness of the boundary. However, each model has its own strengths and weak-
nesses.

GM methods can reach the global optimum because of efficient algorithms inspired
by the max-flow min-cut theorem. Although in most cases, the used algorithm such
as α-expansion [2] is still a local search algorithm, one can claim the solution is ap-
proximately optimal due to the extremely large local search neighborhood. The unique
solution of GM methods could achieve reasonably good segmentation quality, but some-
times misses the fine details, which could be critical in medical context. On the other

� This grant was partially supported based on funding from the following grants NIH-R01-
HL086578, NIH-R21-HL088354 and NSF-MRI-1229628.

K. Mori et al. (Eds.): MICCAI 2013, Part II, LNCS 8150, pp. 157–164, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



158 M.G. Uzunbaş et al.

hand, DM methods, given a reasonably good initialization, would have the flexibility to
deform to nearby local minimum of the energy which could achieve segmentation with
nice details. However, due to the complicated energy model, DM methods use gradient
descent method, and thus could be trapped in local minima that are very far from the
ground truth.

Based on these observations, several works combining the two models have been
introduced in the computer vision and the medical imaging literature. The general idea
is to use graphical model at the gradient computation step of the deformable model, so
that the deforming contour is less likely to be trapped at local minima that is far from
the ground truth. Chen et al. [4] deform the contour by iteratively solving a graphical
model optimization problem. At each iteration, the graphical model enforces that the
deformation should respect priors trained offline and also should not be too far from the
current contour. Huang et al. [7] formulated the segmentation task as a joint inference
problem of contour and pixel labeling so that the two models are tightly coupled. At
each step of the iteration, a graphical model is constructed. Instead of the MAP, the
marginals of the graphical model are used as part of the gradient in deformable model.

Fig. 1. Top: binary graphical model
(left) would produce wrong regions for
either labels, but multi-label graphical
model (right) is correct; Bottom: com-
parison of combining DM with binary
GM (left) and multi-label GM (right).

However, these methods only use binary la-
beling when constructing the graphical model,
which cannot be used directly for segmenting
multi organs. One could extend these methods
to segment multi organs straightforwardly by
constructing a binary graphical model for each
deforming contour. In this setting, the foreground
and background labels correspond to the cur-
rent concerned organ and the union of the rest,
respectively. Unfortunately, this method would
have difficulty to distinguish the two neighboring
regions if they only have slightly different inten-
sity distributions but are very different from the
remaining regions (see an example in Figure 1).

In this paper, we propose a hybrid model to
naturally cope with the multi organ segmenta-
tion problem by integrating GM and DM meth-
ods. Our main idea is to formulate a multi label
graphical model problem at each iteration, and use the MAP inference result as part of
the gradient (i.e., external forces) of deformable model. Such inference task could be
solved efficiently using α-expansion algorithm [2]. The main advantage of our model
is that in the multiple labeling graphical model, regions of different labels bring high
level constraint naturally and implicitly to the external forces of deformable models.
Therefore, two similar neighboring regions can still be separated easily, and the re-
sulting regions are more accurate as per the ground truth. See Figure 1 for an illus-
tration and Section 3 for more comparisons. Besides the accuracy and robustness for
multi organ segmentation, this proposed model does not need any offline learning (in
contrast to [4]), has few parameter, and contains the advantages of both GM and DM
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methods. We have applied this proposed method to two challenging clinical
applications, i.e., knee joint bone segmentation and cardiac segmentation, and achieved
promising results.

2 Methodology

The goal of our segmentation method is to find multiple regions with smooth and closed
boundaries. We start with the overall energy functional for m models forming a set C
as:

E(C) = Eint(C) +

m∑

i=1

Ei
ext(Ci) (1)

Here, the first term Eint is the smoothness term (see [9] and [3]) and Ei
ext is the data

term for contour i. In contrast to the classical choice such as the difference from a
constant value [12] or the negative log likelihood of a given distribution [14], we assume
a region of interest (ROI) for contour i is given (Ri), and define the i-th external energy
as

Ei
ext(Ci) =

1

V ol

∫∫∫

Ω

(ΦCi(x)− Φ∂Ri(x))
2dx (2)

Here Ω is the image domain and V ol is its volume. We denote ΦCi and Φ∂Ri as the
signed distance functions of the contour and the boundary of the region of interest,
respectively. Intuitively, minimizing this term would pull the contour, Ci, towards the
boundary of ROI, ∂Ri. Our algorithm minimizes E(C) using gradient descent method.
At each iteration, we compute the gradient ∂E/∂C and evolve the contours accordingly.

At each iteration, we define the ROIs by constructing a mutli-label graphical model
depending on the current contours C. The MAP of the graphical model gives us the set
of ROIs. We denote L as a labeling, which assigns to each pixel/voxel a label belonging
to the label set L = {1, ...,m,m+ 1}, corresponding to regions inside the m con-
tours and the background (m+1). We compute the labeling optimizing the conditional
probability

L∗ = argmax
L

{P (L | I,C)} (3)

The ROI Ri is then the set of voxels with label li in L∗. Assuming that the image data I
and the deformable models C are independent and also conditionally independent given
the labeling L, we define the posterior probability of labeling L:

P (L | I,C) =
P (I,C | L)P (L)

P (I,C)
=

1

P (L)
· P (I | L)P (L)

P (I)
· P (C | L)P (L)

P (C)
(4)

With the assumption that each labeling has equal prior probability we have

P (L | I,C) ∝ P (L | I) · P (L | C) (5)

Here the negative log likelihood of P (L | I) is the same as the energy in conven-
tional multi-label graphical model, and P (L | C) is the model shape prior, defined as
P (L | C) =

∏
j∈V P (Lj |C), where V is the set of all voxels. The shape prior of each
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(a) (b) (c) (d) (e)

Fig. 2. Iterative, model constrained estimation of labels. (a) User provided model initializations
and background cues (strokes in magenta). (b-d) multi-phase graph cut results and states of the
deformable models at consecutive iterations. In top row, gray color represents the label for blue
model (left ventricle) and black color represents the label for green model (right ventricle), white
label represents the background. In bottom row, deformable models at consecutive iterations are
shown. (e) Plot of Eext energy values computed at each iterations.

individual voxel P (Lj|C) is inversely proportional to the distance from the model. Let
i = Lj , we have

P (Lj | C) = P (Lj | Ci) =
{
1 if ΦCi(j) ≥ 0,

1− ‖ΦCi
(xi)‖

‖(ΦCi
)‖∞

otherwise

According to the above definition, voxels which are closer to a model are more likely to
belong to the label of that particular model. This leads to the final energy for graphical
model as

−log(P (L | I,C)) ∝ E(L) =

N∑

j

(
uj(Lj)− log(P (Lj | C))

)
+

∑

p,q∈N
Lp �=Lq

bpq (6)

In the above equation, uj(Lj) is the cost of assigning label Lj to jth voxel and are
computed as ‖Ij − μi‖2/σi where i = Lj , μi and σi are mean and standard deviation
of the intensities inside the region enclosed by Ci. bpq is the typical binary term of MRF
and is defined as (|Ip − Iq|2/σ)× dist(p, q)−1. For more details about construction of
the graph and inference method we refer the reader to [11] and [2]. We solve the MAP
inference problem given in Eq. 3 using α-expansion algorithm [2].

Integrating Deformable Models and Graph Cuts: According to the energy function
defined in Eq. 1, the models are deformed under smoothness constraints and the attrac-
tion force coming from the ROIs. The minimization problem can be achieved by using
an alternating minimization scheme where we do coordinate descent and split it into two
problems: 1) fix multi phase labeling conditioned on the given models and image data;
2) locally deform the models minimizing the other energy terms such as smoothness
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and image gradient etc. A single deformable model Ci is represented explicitly in terms
of splines (2D) or meshes (3D) as in [8], [5] and deformed according to the deformable
model dynamics explained there. Our segmentation process starts with initialization of
the models {C1, ..., Cm} for the foreground objects and providing markings (seeds) for
the background. Before starting the iterative process, a graph is constructed only once
with the desired connectivity (can be 8 in 2D or 26 in 3D) using the initial models
and the seeds. The unary and compatibility potentials along with the model shape con-
straints are computed for the graph cut. Then we calculate the labeling according to the
minimization of Eq. 6. Once we obtain the labels for each pixel, we select the ROIs
that intersect the models, and for each model, we compute driving forces using the as-
sociated ROI (see Eq. 2). We continue this alternating process iteratively and at each
iteration after the models are deformed we update the parameters μ, σ and P (Lj | C).
We continue deformation in the same scheme until convergence. In Fig. 2, we demon-
strate this process for two foreground object segmentation. Fig. 2(a) shows the user
initialized models for the foregrounds (blue and green) and strokes for the background
(in magenta). Fig. 2(b-d) top row show the states of MRF labeling at consecutive steps.
One can observe that, as the iterations continue not only the smoothness of the labels
are enhanced but also the accuracy of the labeling gets better and better. Thus, Eext pro-
vides more accurate driving force as the iterations continue. Fig. 2(e) shows the energy
minimization process at each iteration which is calculated from Eq. 2. According to the
plot, it is clear that the energy computed for each model is monotonically minimized
and converges.

Implementation Detail: Multi phase graph cut method is not guaranteed to always re-
turn smooth and distinct region segments for each label, especially when target regions
present similar/identical intensity properties. Due to this similarity, the calculated unar-
ies could be in-distinctive and resulting labeling would not return structured segments.
In such a case, the selected ROI per deformable model would not be accurate enough to
drive the model correctly. To tackle this problem we develop an online label unification
method which adaptively identifies the labels of the models to be merged. We do this
unification operation according to the Kullback-Leibler divergence (KL) between the
kernel density estimated intensity distributions underneath the models. In Fig. 3(a), the
estimated distributions for each model region is shown. In this scenario, according to
KL score, the algorithm decides to unify the yellow model label with the red model
label, and the light blue label with the dark blue label. With the unification of the labels
target label size becomes 3 including the background. In (b), we compare the resulting
labels of multi phase graph cut w/o using the unification. As seen in the bottom image,
the labeled regions are more smooth relative to the top image. Note that the label set
is automatically shrunk to 2 foreground labels but this does not mean that number of
models are changed. The models always select the binary ROI that intersect with it-
self. Then, the distance map of the ROI is used in the Eext term as shown in Eq. 2. In
Fig. 3(c) and (d), we show the effect of our unification mechanism to the deformation
force. As seen in the bottom image the distance map computed for right ventricle and
the left atrium are more accurate. Also in Fig. 3(e) we compare resulting segmentations
at convergence to demonstrate the effect of our unification process. With this alternating
minimization scheme, we take advantage of the strengths of these two methods. At each
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(a) (b) (c) (d) (e)

Fig. 3. Label unification and its effect to the segmentation: (a) Example kernel density estimate
of the regions underneath the models. (b)Top row MAP-MRF labeling without unification (4
foreground labels). Bottom row, MAP-MRF labeling with unification (2 foreground labels). (c)-
(d) Signed distance maps for two different models with (bottom) and without (top) unification.(e)
Resulting segmentations obtained w/o unification.

(a) (b) (c) (d)

Fig. 4. Experiment on knee joint MR image. (a) Three model initializations and background cues
(strokes) for segmentation of tibia, femur and patella. (b) [8]. (c) [7]. (d) Our method .

iteration the models are updated locally with globally computed forces and the global
parameters of the MAP-MRF are updated locally. Moreover as the models start getting
close to the actual target object shape, the system reaches convergence very precisely.

3 Experiments

We validate this proposed method on two multi organ segmentation applications. Our
method is compared with two relevant approaches, 1) Metamorphs [8] which integrates
texture information into deformable models, and 2) a graphical model coupling MRFs
and deformable models [7]. They are evaluated on both MR and CT data sets whose
ground truths were manually annotated by clinical experts. Our algorithm was imple-
mented in MATLAB with C programming extensions. We tested the algorithm on a
quad core (3.4 GHz) computer with 8Gb of memory.
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Knee Joint Bone Segmentation: We segment knee joint bones femur, tibia and patella
from 23 MR scans. The data scan protocol consists of 3D DESS scan with water ex-
citation having 0.36x0.36x0.70mm voxel size. The qualitative comparisons are shown
in Fig. 4. Due to the intensity heterogeneity inside the bone structures (particularly in
regions close to the cartilage), [8] does not perform well and stuck in local minima as
it uses the local online intensity modeling. Starting from the same initializations, our
method converges to the final state for all 3 organs within 30 iterations (∼6.5 sec/iter)
while [8] stops at the final stage after 18, 23 and 38 iterations (∼8 sec/iter) for patella,
tibia and femur, respectively. For fair comparison, we tune deformation parameters (i.e.
smoothness, image gradient, balloon) for method [8] to achieve the best performance
and keep them exactly same for our method.

To compare with [7], we also carefully selected its parameters in order to obtain the
best results. We observed that the Expectation Maximization approach in [7] performs
better than [8] when updating the attraction force for the deformable models. However,
it takes more iterations due to its narrow band limitation also running time per iteration
takes ∼20 sec which is 3 times the running time of our approach. In addition, our
method takes advantage of multi phase MRF labeling and the ROIs per models are
estimated more accurately. Thus, our hybrid approach gets out of local minima and also
avoid possible leakages towards muscle regions.

Table 1. Volumetric and surface er-
rors for 23 MRI and 15 CT scans

mean Overlap Avg. Surf.
±std Err. [%] Dist. voxel
femur 7.34±2.75 4.2±2.42
tibia 6.27±2.22 3.3±0.57

patella 3.9±1.37 1.4±0.32
LA 7.12±2.21 1.9±1.45
LV 8.12±1.35 3.1±1.52
RA 5.88±2.33 1.92±0.32
RV 9.12±2.9 3.1±0.42

Cardiac Segmentation: We evaluated our algo-
rithm on segmenting the cardiac structures such as
Right Atrium (RA), Right Ventricle (RV), Left Ven-
tricle (LV), Left Atrium (LA) from a set of 15 CT
volumes. The data scan protocol consisted of 3D
CT scan with 1.0x1.0x1.0mm voxel size. The fig-
ure is shown in the supplementary materials due
to page limitation. Compared to [8], our method
performs slightly better in terms of avoiding leak-
ages towards the heart muscle. In addition, the my-
ocardium between LV and RV is identified better.
For the LV case, the papillary muscles are nicely in-
cluded into the segmentation owing to the smooth-
ness factor of the graphical model and the param-
eter update scheme of the deformation. With our method, all models converge to the
final state within 50 iterations (∼4.9 sec/iter). Compared to [7], our method achieves
better average accuracy of all organs since the background is identified well within the
multi-region labeling scheme. Most significant accuracy differences between [7] and
our method are observed for the RV and LV cases, due to local minima problems.

Table 1 shows quantitative results of our method in both applications. We reported
the mean and standard deviation of voxel distances between segmented surfaces and
ground truth, and volume overlap errors in proportions. Due to page limitations, we pro-
vide more comparisons in the supplementary materials. In general, our method achieves
more accurate results than the other two hybrid approaches, and is also more efficient.
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4 Conclusions and Future Work

In this paper we proposed a new hybrid multi object segmentation approach, in which
deformable models and multi label graphical models are integrated into an alternating
optimization framework. We integrate multi phase graph cut labeling into deformable
model framework so that it provides the desired speed term for each deformable model
to converge to the true boundary. We provide solutions for potential drawbacks of the
two methods by combining the benefits of them to segment multiple objects efficiently
and simultaneously using global and local constraints. We validated our method on
medical images (MR, CT) and real-world images. As a future direction, we are currently
working on speeding up the running time of our algorithm in 3D. We are planing to use
a supervoxel approach which could reduce the graph cut processing time drastically. We
also consider using conditional random fields model for a learning based multi object
segmentation that might possibly use coupled prior information as well.
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