Efficient Computation of Persistent Homology
for Cubical Data

Hubert Wagner, Chao Chen, Erald Vucini

Abstract In this paper we present an efficient framework for compaoiedif persis-
tent homology of cubical data in arbitrary dimensions. Aisgg algorithm using
simplicial complexes is adapted to the setting of cubicahplexes. The proposed
approach enables efficient application of persistent hogyah domains where the
data is naturally given in a cubical form. By avoiding triamhation of the data, we
significantly reduce the size of the complex. We also preaetdta-structure de-
signed to compactly store and quickly manipulate cubicahglexes. By means
of numerical experiments, we show high speed and memoryesféig of our ap-
proach. We compare our framework to other available impteat@ns, showing its
superiority. Finally, we report performance on selectedsB 4D data-sets.

1 Introduction

Persistent homology [10, 11] has drawn much attention ioaligation and data
analysis, mainly due to the fact that it extracts topologickormation that is re-
silient to noise. This is especially important in applioatiareas, where data typi-
cally comes from measurements which are inherently inexdittough direct ap-

Hubert Wagner

Vienna University of Technology, Austria and
Jagiellonian University, Poland

e-mail: hubert.wagner@ii.uj.edu.pl

Chao Chen

Institute of Science and Technology Austria and
Vienna University of Technology, Austria
e-mail: chao.chen@ist.ac.at

Erald Vugini

VRVis Center for Virtual Reality and Visualization Resdaidd, Austria and
Vienna University of Technology, Austria

e-mail: erald.vucini@vrvis.at

2 Hubert Wagner, Chao Chen, Erald Vugini

plication of persistent homology is still at an early stagesely related concepts
like size functions [4], contour trees [2, 5], Reeb graplg ghd Morse-Smale com-
plexes [14] have been successfully used.

The under-usage of persistence in applications is largeytd its high compu-
tational cost. The standard algorithm [10] takes cubic nugtime, which can be
prohibitive even for small size data (e.g., 644 x 64). In addition to the high time
complexity, there are two further issug4) the memory consumption of the cur-
rently available implementations, even for small datassievery large and hence
prohibitive for commodity computers, aif@) the focus of several applications is in
data of higher dimensions, e.g., 4D, 5D or higher. Few imgletations for general
dimension are available and the existing ones do not scdlewitie the increase of
dimensions, hence introducing larger computational tiamesmemory inefficiency.

In this paper, we present an efficient framework that congppégsistent homol-
ogy exactly. To our knowledge, this is the very first implementation tbatld
handle large size and high dimensional data in reasonatéestnd memory. We fo-
cus on uniformly/regularly sampled data which is commonisualization and data
analysis, i.e. image data consisting of pixels (2D imagem)els (3D scans, simula-
tions), or their higher-dimensional analogs, e.g., 4D tiragying data. In this work,
we use the name 'cubical’ for such data.

We depart from the standard method which involves triartindahe space, and
computing persistent homology of the resulting simplicianplex [10, 11]. We use
cubical complexes [15], which do not require subdivisiorited input. The advan-
tage is twofold. First, the size of the complexes is signifiyareduced, especially
for high dimensional data (see Section 5 for a quantitatiadyeis). Second, cubical
complexes allow the usage of more compact data-structures.

The standard persistence algorithm requires the computafia sorted bound-
ary matrix. This step can be a significant bottleneck, esfigan terms of memory
consumption. In this work we provide an efficient and comadgotrithm for this
step, using techniques from (non-persistence) cubicalohmyy [15] (see Section
4).

Finally, in Section 7, we present experimental results. Garson with exist-
ing packages shows significant efficiency improvement. \§e akplore how our
method scales with respect to data size and dimension. lcgian, our frame-
work can handle data of large size and high dimension, anéfive, makes the
persistence computation of cubical data more feasible.

2 Related Work

The first algorithm for computing persistence [11] has cubiming time with re-
gard to the complex size (which is larger than the input sig&yozov [20] formu-
lated a worst case scenario for which the persistence #igoreaches this asymp-

1 We emphasize that our work focuses on computing persiseraly. There are approximation
methods which trade accuracy for efficiency. See Section 2.

Cubical Persistence 3

totic bound. When focusing on 0-dimensional homology, offiad data structures
can be used to compute persistence in tdea (n)) [10], wherea is the inverse of
the Ackermann functions andis the input size. Milosavljevic et al. [18] compute
persistent homology in matrix multiplication tin@®(n®) where the currently best
estimation ofw is 2.376. Chen and Kerber [6] proposed a randomized algorithm
whose complexity depends on the number of persistencewhose persistence is
over a certain threshold. Despite showing better the@letmmplexity, it is unclear
whether these methods are better than the standard pecsistigorithm in practice.

In terms of implementation, Morozov [19] provides a C++ cddlethe persis-
tence algorithm. Chen and Kerber [7] devised a techniquehyhin practice, sig-
nificantly improves the matrix-reduction part of this alglom. We build upon their
work, to improve the overall performance of the persisteaigerithm.

The application of cubical homology is straightforward Iretareas of image
processing and visualization, where cubical data is thie&ymput. Non-persistent
cubical homology has found practical applications in a nend cases [21, 22]. A
few attempts of cubical persistence computations have inegie recently [16, 25].
They do not, however, tackle the problem of performance2fj, [experiments with
datasets containing several thousands of voxels are egbdrt comparison, real
world applications require processing of data in the rarfgaithions or billions of
voxels.

Recently, Mrozek and Wanner [21] showed that cubical penrsisiomology can
be used for medium-sized datasets. A detailed performamemsiry is given for 2D
and 3D images. One downside of this approach is the depepdenthe number
of unigue values of the image. When such number is close tinfhe size, the
complexity is prohibitively high. In Section 7, we companer anethod with this
algorithm.

We must differentiate between two main types of persistenogutations: exact
and approximative (where the persistence is calculatetbajpately). While we
focus on the first type, approximation is less computatignatensive, and thus is
important for large data. Bendich et al. [3] use octrees fwr@amate the input. A
simplicial complex of small size is then used to completesiséence computation.

3 Theoretical Background

Simplicial and cubical complexes. In computational topology, simplicial com-
plexes are frequently used to describe topological spakesmplicial complex
consists of simplices like vertices, edges and trianglegédneral, ad-simplexis
the convex hull ol + 1 points. The convex hull of any subset of these 1 points
is afaceof this d-simplex. A collection of simplice, is asimplicial complexf:

1) for any simplex irK, all its faces also belong t, and 2) for any two simplices
in K, their intersection is either empty, or a common face of them

Next, we define cubical complexes. Afementary intervais defined as a unit
interval [k,k+ 1], or a degenerate intervfd, k. For ad-dimensional space, @be

4 Hubert Wagner, Chao Chen, Erald Vugini

Vo Vo - Vo — Vo
(@ (b) (© (d)

Fig. 1 Cubical complex triangulations: a) a 2D cubical complexd hjits triangulation, c) a 3D
cubical complex, and d) its triangulation (only simplicelsigh containvy are drawn).

is a product ofd elementary intervals: |'|id:lli. The number of non-degenerate
intervals in such product s tlttmensiorof this cube. 0-cubes, 1-cubes, 2-cubes and
3-cubes are vertices, edges, squares and 3D cubes (vadgigrtively. Given two
cubesa,bC RY, ais afaceof bif and only ifa C b. A cubical complexf dimension
d is a collection of cubes of dimension at mastSimilarly to the definition of a
simplicial complex, it must be closed under taking facesiatetsections.

In this paper, we will use cubical complexes to describe #ta.dn Figure 1 we
show 2-dimensional and 3-dimensional cubical complexesciibing a 2D image
of size 3x 3 and a 3D image of size:33 x 3. The corresponding simplicial com-
plex representations are also shown. We use one specifigtii@tion, namely, the
Freudenthal triangulatiorf13, 17]. Such triangulation is easy to extend to general
dimension.

Boundary matrix. For anyd-dimensionactell (that is: simplex or cube), itsound-
ary is the set of itsd — 1)-dimensional faces. This extends linearly to the bouydar
of a set ofd-cells, namely, a-chain Specifically, the boundary of a set of cells
is the modulo 2 sum of the boundaries of each of its elementgeheral, if we
specify a unique index for each simplexdahain corresponds to a vectorZﬂ@d,
wherengy is the number ofl-dimensional cells in the complex. Furthermore, the
dimensional boundary operator can be written &g a x ng binary matrix whose
columns are the boundariesaicells, while rows represend (- 1)-cells.

Persistent homology. We review persistent homology [10, 11], focusing Bs
homology. Due to space limitation, we do not introduce hargglin this paper.
Please see [12] for an intuitive explanation, and [23, 10}étated textbooks.

Given a topological spacé and filtering function f: X — R, persistent homol-
ogy studies homological changes of the sublevel S&ts; f~1(—w,t]. The algo-
rithm captures the birth and death times of homology claskte sublevel set as it
grows fromX~> to X*®, e.g., components as 0-dimensional homology classes, tun-
nels as 1-dimensional classes, voids as 2-dimensionakesliaand so on. By birth,
we mean that a homology class comes into being; by death, vae ieither be-
comes trivial or becomes identical to some other class barliee The persistence,
or lifetime of a class, is the difference between the deathtdnth times. Homology

Cubical Persistence 5

classes with larger persistence reveal information ablmugtobal structure of the
spaceX, as described by the functidn

Persistence could be visualized in different ways. One-a@tepted idea is the
persistence diagram [8], which is a set of points in a twoedisional plane, each
corresponding to a persistent homology class. The codesiraf such a point are
the birth and death time of the related class.

An important justification of the usage of persistence isdtability theorem.
Cohen-Steiner et al. [8] proved that for any two filtering étions f and g, the
difference of their persistence is always upperboundedéi,t norm of their dif-
ference:

I = glles := max f (x) — g(x)]-

This guarantees that persistence can be used as a signghapever two persis-
tence outputs are different, we know that the functions afmitely different.

In our framework, for 2D images we assume 4-connectivitygeéneral, ford-
dimensional cubical data, we usd-2onnectivity.

Persistence computation. Edelsbrunner et al. [11] devised an algorithm to com-
pute persistent homology, which works in cubic time (in tize ©f a complex). It
requires preprocessing of the data (also see Figure 2).sk @bimages, function
f is defined on all pixels/voxels. First, these values arejméted as values of ver-
tices of a complex. Next, thiilitration of the complex is computed and tkerted
boundary matrixs generated. This matrix is the input to tlegluction algorithm

Filtration can be described as adding cells with increasing values tonglex,
one by one. To achieve this fiftration-building algorithmextends the function to
all cells of the complex, by assigning each cell the maximahe of its vertices.
Then, all cells are sorted in ascending order accordinggduthction value, so that
each cell is added to the filtration after all of its faces. f'Bacsequence of cells
is called alower-star filtration Having calculated the ordering of cells, a sorted
boundary matrix can be generated.

Persistent Homology Workflow in a Nutshell

Output

Fig. 2 A workflow of the persistent homology computation.

In the reduction step, the algorithm performs column reidaston the sorted
boundary matrix from left to right. Each new column is rediitbg addition with
the already reduced columns, until its lowest nonzero dstas high as possible.
The reduced matrix encodes all the persistent homologyrirdgon.

6 Hubert Wagner, Chao Chen, Erald Vugini

4 Efficient Filtration-Building Algorithm

The filtration-building is one of the main bottlenecks of fregsistence algorithm. A
straightforward approach would choose to store the boyn@tationship between
cells and their faces. In this section, we describe the figgbrrcontribution of the
paper, a new algorithm for the filtration-building step. @lgorithm uses the regular
structure of cubical complex and adapts a compact datatsteuahich has shown
its power in non-persistent cubical homology.

Cubical complex representation. We first describe CubeMap, a compact represen-
tation of cubical complexes. To the best of our knowledgealar structure was
first introduced in CAPD library [1] for non-persistent caai homology.

For an example 2D image with>65 pixels see Figure 3. Due to the regular
structure, relationship between cells can be read immagliftom their coordinates.
We can store the necessary information (i.e. order in thafiitin, function value)
for each cell in a % 9 array (Figure 3(c)). We can immediately get the dimension
of any cell (whether it is a vertex, edge, or square), as veelissfaces andofaces
namely, cells of whom it is a face. We do this by checking cawmtés modulo 2.
To explain this fact, we recall that we defined cubes as prisdefdntervals. Even
coordinates correspond to degenerate intervals of a cube.

1 T
EREEEEEEEN
(I
TP
[I
TP
(I
T
(]

Fig. 3 a) Cubical complex built over a gray-scale 2D image withSpixels. Each vertex (yellow)
corresponds to a pixel. Edges (blue) and cubes (red) arérootesl accordingly. b) The cubical
complex itself. ¢) The corresponding CubeMap, all inforimag for filtration-building are encoded
in a 9x 9 array. Each element corresponds to a cell.

The aforementioned properties generalize for arbitranyestisions. This is due
to the inductive construction of cubical complexes, anceiated to cubes being
products of intervals.

Let us consider input data of dimensidnand sizewd, wherew is the num-
ber of vertices in each dimension. We store informationchtd to cells in a-
dimensional array witi2w — 1) elements. This array is composed of overlapping
copies of arrays of size®3We call this structure th€ubeMap

The major advantage of the proposed data-structure is theoirad memory
efficiency. Boundary relations are implicitly encoded i ttoordinates of cells.
The coordinates itself are also implicit. Furthermore, we candomly access each

Cubical Persistence 7

Fig. 4 a) Values off assigned to vertices and extended to all cubes. b) Cellssargreed indices
in the filtration. These indices are separate for each dirmenSertices are marked as V, edges as
E, squares as S.

cell and quickly locate its boundaries. See Section 6 fah&rdetails and Section
7 for an experimental justification.

Filtration-building. Let us now present an efficient algorithm to compute a filtra-
tion of a cubical complex induced by a given functibifsee Algorithm 1). We use
the CubeMap datastructure to store additional informafiiwreach cell (function
value, filtration order). The outcome of this algorithm iscated boundary matrix,
being the input of the reduction step. Since in case of clibata boundary matrices
have onlyO(d) non-zero elements per column, sparse representationgeécalty
used.

The intuition behind the algorithm is that when we iterat®tlgh all vertices in
descendingrder, we know that the vertices’ cofaces, which were noeddd the
filtration, belong to their lower-stars, and can be addedhéofittration. We cannot
build the boundary matrix in the same step, since the indi€éise adjacent cells
might be not yet computed. Do note that on line 5, filtratiodices are assigned
from higher to lower. Figure 4 illustrates the algorithm pioiting the properties of
cubical complexes makes this algorithm efficient (referdction 6 for details).

Algorithm 1 Computing filtration and sorted boundary matrix

Input: function f, given on vertices of a cubical compl&x
Output: sorted boundary matrix, extension of functibmo all cells ofK
1: sort vertices oK by values off (descending)
2: for each verte¥ in sorted ordedo
for each cub&€; with Vi as one of its verticedo
if C; wasnot assigned filtration indethen
assign next (smaller) filtration index @
F(Cj) « F(V).
. for each cub&; of K do
column« filtration index ofC;
for each cubd; in boundary ofC; do
row < filtration index ofB;
boundary matrix(row, column)- 1

Noukw

EBoow

8 Hubert Wagner, Chao Chen, Erald Vugini

5 Sizes of Complexes

When switching from simplicial complexes to cubical conxglg, the size of the
complex is significantly reduced. This is a clear improvetietoth memory and
runtime efficiency. We should emphasize that the complexitthe standard re-
duction algorithm is given in the size of the complex, not thenber of vertices.
Therefore, reducing the size of a complex has a significapagh

In this section, we analyze how the ratio of the sizes of siciglland cubi-
cal complexes increases with regard to the data dimensiershw that this ratio
increases exponentially with the dimension, which moéigehe usage of cubical
approaches, such as ours. For simplicity we disregard tavyreffects, assuming
that the number of cells lying on the boundary is insigniftéan

In Figure 1, we show examples of cubical complexes and thieingulations.
The ratio between the number of cofaces of the vewtein a simplicial and in a
cubical complex ig6 : 4) and(26 : 8) for 2D and 3D complexes, respectively. This
is also the ratio of the size of simplicial and cubical compk since these selected
cells serve as thegenerators

For ad-dimensional data, we denote the concerned ratiogas §;/Cq, Where
Cyq and & are the sizes of a cubical complex and its triangulatiomeesvely. It
is nontrivial to give an exact formula gy, since the minimal-cardinality cube-
triangulation is an open problem [26]. Here we give a lowewid ofpy for d < 7
by triangulating all cubes of a cubical complex separatelydch dimension. When
triangulating ad-cube, we count only the resultirdgsimplices, and theifd — 1)-
dimensional intersections. Finally, taking into accotnatfact that certain simplices
will be common faces of multiple higher-dimensional simp§, we get

HLEDI (iJCril) (Tis1—1)

X
Pd = >d

wherety is the number ofl-simplices in a triangulation of d-cube.

In Table 1 we present the values of such lower-bounds foeuwifft dimensions
(d=1,---,7). We consider two cases: optimal triangulation [26] aneuiglenthal,
usingd! simplices. It is clear that in both cases the lower-bourdéases exponen-
tially with regard to the data dimension.

This observation leads to the following conjecture. Suchjecture, if correct,
shows how algorithms based on cubical and simplicial corgslscale with respect
to the dimension.

Conjecture 14 increases exponentially th

2 This assumption is realistic when complexes are large.

Cubical Persistence 9

Table 1 Lower-bounds of the size ratiqg.

Dimension ¢) 1(2| 3] 4 5 6 7
Optimal Ty 1|12 5| 16| 67] 308 | 1493

lower-bound ofpg|[1.0]1.5/2.755.62512.937133.968 90.265
Freudenthd de 1]12] 6| 24| 120 | 720 | 5040

ower-bound ofpg|[1.0]1.5| 3.0(7.12919.37860.156213.06

6 Implementation Details

In this section we briefly comment on the techniques we usedhance the perfor-
mance of our implementation. We focus on the choice of prdpta-structures, and
exploiting various features of cubical complexes. We immated this algorithm in

C++.

Filtration-building algorithm. We use a 2-pass modification of the standard
filtration-building algorithm. Reversing the iterationder over the vertices does
not affect the asymptotic complexity, but simplifies thetfgass of the algorithm,
which resulted in better performance.

We calculate the time complexity of this algorithm. To dcstprecisely, we as-
sume that the dimensiod is not a constant. This is a fair assumption since we
consider general dimensions. We usd-dimensional array to store our data, so
random access is n@(1), butO(d), as it takesl — 1 multiplications and additions
to calculate the address in memory.

Let n be the size of input (the number of vertices in our complexj}otal there
are O(29n) cubes in the complex. We ignore what happens at boundaritseof
complex. Eachi-cube has exactly®boundary cubes, and each vertex hés-3
cofaces. Accessing each of them cd3tsl). This yields the following complexity
of calculating the filtration and the boundary matric®éd3%n 4 d?29n).

Using the properties of CubeMap, we can reduce this contglé&ince the struc-
ture of the whole complex is regular, we can precalculate argroffsets from
cubes of different dimensions and orientations to its cegaand boundaries. Ac-
cessing all boundary cubes and cofaces takes constantizedotime. The pre-
processing time does not depend on input size and takesQ{a8?) time and
memory. With the CubeMap data structure, our algorithm caimiplemented in
0(3%n+d2%n) time and@(d2%n) memory.

Storing boundary matrices. Now we present a suggestion regarding performance,
namely, the usage of a proper data-structure for storingctthemns of (sparse)
boundary matrices. In [10] a linked-list data-structursuggested. This seems to
be a sub-optimal solution, as it has an overhead of at leaspomter per stored
element. For 64-bit machines this is 8B - twice as much asdkeede need to store
in a typical situation (one 32-bit integer).

Using an automatically-growing array, such as std::veat@ilable in STL is
much more efficient (speed-up by a factor of at least 2). Ateorhemory over-
head is much smaller - 16B per column (not per element asd&efl the required

10 Hubert Wagner, Chao Chen, Erald Vugini

operations have the same (amortized) complexity [9], aBsyithat adding an ele-
ment at the back can be done in constant amortized time. Aésafing the array
from left to right is fast, due to memory-locality, which istthe case for linked-list
implementations.

7 Results

The testing platform of our experiments is a six-core AMD &@ph(tm) processor
2.4GHz with 512KB L2 cache per core, and 66GB of RAM, runniiguix. Our al-
gorithm runs on a single core. We use 3D and 4D (3D+time) @lbliata for testing
and comparing our algorithm. We compare our method withtiegismplementa-
tions. We measure memory usage, filtration-building andcgdn times.

Comparing with existing implementations. We compare our implementation (re-
ferred to as CubPers) to three existing implementations:

1. SimpPers:(by Chen and Kerber [7]) Uses simplicial complexes. Both@ers
and CubPers use the same reduction algorithm, but our agpreses cubical
complexes and CubeMap to accelerate the filtration-biglgiocess.

2. Dionysus: (by Morozov [19]) This code is suited for more general compte
and computes also other information like vineyards. We attap implementa-
tion to operate on cubical data, by triangulating the inpurich is the standard
approach. Since this implementation takes a filtration pstirthe time for build-
ing the filtration is not taken into account.

3. CAPD: (by Mrozek [21], a part of CAPD library [1]) We stress thattlipproach
was designed for data with a small number of unique functaloas, which is
not the case for the data we use. Additionally it producessiores persistent
homology generators which incur a significant overhead.

In Tables 2 and 3 we compare the memory and times of our appitoathe
aforementioned implementations. For testing we have usedneurysm datasét
In order to explore the behavior of the algorithms when tha d&e increases lin-
early, we uniformly scale the data into%00, 150, 20, using nearest neighbor
interpolation. Clearly, our implementation, CubPerspeuforms other programs in
terms of memory and time efficiency.

Due to the usage of CubeMap, the memory usage is reduced bydan af
magnitude. This is extremely important, as it enables tlge®sf much larger data-
sets on commaodity computers. While SimpPers significamtlgroves over other
methods in terms of reduction time [7], our method furthepiiaves the filtration-
building time. It is also shown that using cubical complekesead of simplicial
complexes improves the reduction time.

Scalability. Table 4 shows how our implementation scales with respecintera-
sion. We used random data - each vertex is assigned an inedgerfrom 0 to 1023

3 From the Volvis repository (http://volvis.org/).

Cubical Persistence 11

Table 2 Memory consumption for the computation of persistence ef Almeurysm dataset for
different implementations. Several down-sampled versibthe original dataset were used. For

specific cases the results are not reported due to memonyelithitations.

50 50 50100 100x 100150 150 150200 200 200256 256 256
CAPD 500MB 2700MB 16000MB - -
Dionysus| _ 200MB 6127MB| __ 21927MH __ 49259MB -
SimpPer{ 352MB 3120MB 11849MH 25232MH -
[CubPers]| __ 42MB] 282V B 860MB] 2029ME 4250MB|

Table 3 Times (in minutes) for the computation of persistence ofAheurysm dataset for differ-
ent technigues. For SimpPers and CubPers, we report battidiit-building time and reduction
time, the whole computation is the sum of the two times.

50 x 50 50]100x 100x 100/150% 150 150200 200x 200256 256 256
CAPD 0.2§ 12.3 134.55 - -
Dionysus 0.32 3.03 13.74 47.23 -
SimpPerf (0.05+0.02) (0.43+0.16) (1.63+0.9) (3.53+3.33 -
[CubPers[[(0.01+0.001) _ (0.10+0.01) _ (0.33+0.13) (0.87+0.43) (1.25+0.78)

Table 4 Times (in minutes) for the computation of persistence fa onillion vertices in different
dimensions (1-6). Both times for filtration and persiste(fitgation+reduction) are given.

Dimension 1D|2D|3D|4D|5D| 6D
Filtration 0.0170.050.150.551.65 3.70
Persistence (reductig.0670.120.230.874.8017.7¢

(the choice was arbitrary). The distribution is uniform @hd number of vertices
(1,000,000) is constant for all dimensions. We can see #rébpnance deteriorates
exponentially. This is understandable, since the size obécal complex increases
exponentially in dimension . The size of its boundary matrix increases even
faster @29).

In Table 5 we report the timings and memory consumptions éveral 3D
datasets and a 4D time-varying dataconsisting of 32 timesteps. We stress the
following three observations:

Due to the significant improvement of memory efficiency, aupiementation
could compute these data on commodity computers.

Both memory and filtration-building times grow linearly imet size of data (num-
ber of voxels). This also reveals that for very large scale ¢a 100¢), the
memory consumption would be too large. In such a case, wedvoegd an ap-
proximation algorithm (as in [3]) or an out-of-core algbnit.

4 From the Volvis repository (http://volvis.org/) and ICG@pository (www.cg.tuwien.ac.at)
5 From the Osirix repository (http://pubimage.hcuge.cB@BY)

12 Hubert Wagner, Chao Chen, Erald Vugini

e Reduction time varies for different data. Among all datediwe tested, two
medium (256) cases (Christmas Tree and Christmas Present) took siyrtific
more reduction time. This data-dependent behavior of tteatdon algorithm is
an open problem in persistent homology literature.

Table 5 Times in minutes for different 3D datasets and a 4D timeivagrgata (32 timesteps).
Times below 0.001 min were reported as 0.00.

Data set Size Memory (MB)| Times (min
Silicium 98x 34x 34 30| (0.02+0.07
Fuel 64 x 64 x 64 82[(0.02+0.00
Marschner-Lobb 64 x 64 x 64 82| (0.03+0.00
Neghip 64 x 64 x 64 82| (0.03+0.00
Hydrogene 128x 128x 128 538 (0.22+0.40
Engine 256x 256 128 2127 (1.07+0.30
Tooth 256x 256x 161 2674 (1.43+1.48
Christmas Preset 246x 246x 221 3112(2.43+264.35)
Christmas Tree 256x 249x 256 3809 (3.08+11.1
Aneurysm 256x 256 x 256 4250 (1.75+0.77
Bonsai 256x 256 x 256 4250 (1.98+0.93
Foot 256x 256 x 256 4250 (2.15+0.70
Supine 512x 512x 426 26133(23.06+11.88)
Prone 512x 512x 463 28406(25.96+10.38)
Vertebra 512x 512x 512 31415 (26.8+7.58
Heart (4D) 256% 256x 14 x 32 13243 (20.20+1.38

Understanding time-varying data with persistence. With our efficient tool, we are
enabled to study 4D time-varying data using persistencs. i§tone of our future
research focuses. We conclude this section by a pilot stEidydataset represent-
ing a beating heart. We treat all four dimensions of this atapatial and time)
equally?, and then compute the persistence diagrams (Figures &{})-B Figure
5(e) we display graphs of the Betti numbers of the sublevisl &lue, red, green
and pink correspond to 0-3 dimensional Betti numbers, ietsgsdy.

8 Summary and Future Work

In this paper, we showed that our approach can be used to ¢erpptsistent ho-
mology for large cubical data-sets in arbitrary dimensiddsr experiments show
that our method is more efficient with regard to time and megntban the exist-

ing implementations. The reduction of memory usage is ealhe@nportant, as it

enables the use of persistent homology for much larger elstas

6 In general, this may not be the right approach, as it doesssoirae the non-reversibility of time.

Cubical Persistence

13

(a) OD Persistence

(d) 3D Persistence

(b) 1D Persistence

% 1 w0 0 w0 70 B0 0

(c) 2D Persistence

\\\\\\\\\\\\\\\\\\\\\\\\

(e) Betti Numbers of Sublevel Sets

Fig. 5 Persistence diagrams of a beating heart.

There is a wide range of directions to be considered in theréutesearch. We
consider further development of the proposed method. Iticpdar, a parallel im-
plementation is a promising option. Further reduction ofitoey usage and moving
towards out-of-core computations are important dire&jdmt also very challeng-

ing.

As pointed out by one anonymous reviewer, another reasathéounder-usage
of persistence in visualization is the lack of a good integfeo analyze and interact
with persistence. With an efficient implementation in hanels are motivated to
further explore this research direction.

Acknowledgments

This work was supported by the Austrian Science Fund (FW&itgno. P20134-
N13 and the Austrian COMET program. The authors would likéngmk Prof. Her-
bert Edelsbrunner and Dr. Michael Kerber for the fruitfidalissions.

14

Hubert Wagner, Chao Chen, Erald Vugini

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Computer Assisted Proofs in Dynamics: CAPD Homology &ipr http://capd.ii.uj.edu.pl.
. C. L. Bajaj, V. Pascucci, and D. Schikore. The contour spet In Proceedings of IEEE

Visualization pages 167-174, 1997.

. P. Bendich, H. Edelsbrunner, and M. Kerber. Computingistiess and persistence for im-

ages. InProceedings of IEEE Visualizatipwolume 16, pages 1251-1260, 2010.

. S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, and C. Lantultidimensional size functions for

shape comparisord. Math. Imaging Vis.32(2):161-179, 2008.

. H. Carr, J. Snoeyink, and M. van de Panne. Flexible isasasf Simplifying and displaying

scalar topology using the contour tr&@omputational Geometry3(1):42-58, 2010.

. C. Chen and M. Kerber. An Output-Sensitive Algorithm faréstent Homology. IfPro-

ceedings of the 27th annual symposium on Computational gfegra011.

. C. Chen and M. Kerber. Persistent homology computatidh witwist. In27th European

Workshop on Computational Geometry (EuroCG 202011.

. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stabifipersistence diagram®iscrete

and Computational Geometrg7(1):103-120, 2007.

. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sténtroduction to algorithms The

MIT press, 2009.

H. Edelsbrunner and J. HareComputational Topology, An Introductio®merican Mathe-
matical Society, 2010.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Togickl persistence and simplification.
Discrete & Computational Geometrg8(4):511-533, 2002.

D. Freedman and C. Che@Bomputer Visionchapter Algebraic topology for computer vision.
Nova Science, To appear.

H. Freudenthal. Simplizialzerlegungen von bescheinklachheit. Annals of Mathematics
43(3):580-582, 1942.

A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamanrfici&ft computation of morse-
smale complexes for three-dimensional scalar functidB&E Trans. Vis. Comput. Graph.
13(6):1440-1447, 2007.

T. Kaczynski, K. Mischaikow, and M. MrozekComputational Homologyvolume 157 of
Applied Mathematical ScienceSpringer-Verlag, 2004.

G. Kedenburg. Persistent Cubical Homology. Mastegsit) University of Hamburg, 2010.
R. Kershner. The number of circles covering a séimerican Journal of Mathematics
61(3):665-671, 19309.

N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag Pstesit Homology in Matrix Multi-
plication Time. InProceedings of the 27th annual symposium on Computatice@ingtry
2011.

D. Morozov. Dionysus : a C++ library for computing petsig homology.
http://www.mrzv.org/software/dionysus/.

D. Morozov. Persistence algorithm takes cubic time instvoase BioGeometry News, Dept.
Comput. Sci., Duke Univ., Durham, North CaroljrZD05.

M. Mrozek and T. Wanner. Coreduction homology algoritfuminclusions and persistent
homology.Computers and Mathematics with Applications, accep2€d0.

M. Mrozek, M. Zelawski, A. Gryglewski, S. Han, and A. Kmak. Extraction and analysis of
linear features in multidimensional images by homologimathods. preprint, 2010.

J. R. MunkresElements of Algebraic Topologiddison-Wesley, Redwook City, California,
1984.

V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Masdaasn Robust on-line computation of
reeb graphs: simplicity and spee®iCM Trans. Graph.26(58):1-8, 2007.

D. Strombom. Persistent homology in the cubical sgttimeory, implementations and appli-
cations. Master’s thesis, Luled University of Technold2§07.

C. Zong. What is known about unit cub@&ull. Amer. Math. Soc. 42 (2005), 181-222D05.

