
Efficient Computation of Persistent Homology
for Cubical Data

Hubert Wagner, Chao Chen, Erald Vuçini

Abstract In this paper we present an efficient framework for computation of persis-
tent homology of cubical data in arbitrary dimensions. An existing algorithm using
simplicial complexes is adapted to the setting of cubical complexes. The proposed
approach enables efficient application of persistent homology in domains where the
data is naturally given in a cubical form. By avoiding triangulation of the data, we
significantly reduce the size of the complex. We also presenta data-structure de-
signed to compactly store and quickly manipulate cubical complexes. By means
of numerical experiments, we show high speed and memory efficiency of our ap-
proach. We compare our framework to other available implementations, showing its
superiority. Finally, we report performance on selected 3Dand 4D data-sets.

1 Introduction

Persistent homology [10, 11] has drawn much attention in visualization and data
analysis, mainly due to the fact that it extracts topological information that is re-
silient to noise. This is especially important in application areas, where data typi-
cally comes from measurements which are inherently inexact. Although direct ap-

Hubert Wagner
Vienna University of Technology, Austria and
Jagiellonian University, Poland
e-mail: hubert.wagner@ii.uj.edu.pl

Chao Chen
Institute of Science and Technology Austria and
Vienna University of Technology, Austria
e-mail: chao.chen@ist.ac.at

Erald Vuçini
VRVis Center for Virtual Reality and Visualization Research-Ltd, Austria and
Vienna University of Technology, Austria
e-mail: erald.vucini@vrvis.at

1



2 Hubert Wagner, Chao Chen, Erald Vuçini

plication of persistent homology is still at an early stage,closely related concepts
like size functions [4], contour trees [2, 5], Reeb graphs [24] and Morse-Smale com-
plexes [14] have been successfully used.

The under-usage of persistence in applications is largely due to its high compu-
tational cost. The standard algorithm [10] takes cubic running time, which can be
prohibitive even for small size data (e.g., 64×64×64). In addition to the high time
complexity, there are two further issues:(1) the memory consumption of the cur-
rently available implementations, even for small data sizes, is very large and hence
prohibitive for commodity computers, and(2) the focus of several applications is in
data of higher dimensions, e.g., 4D, 5D or higher. Few implementations for general
dimension are available and the existing ones do not scale well with the increase of
dimensions, hence introducing larger computational timesand memory inefficiency.

In this paper, we present an efficient framework that computes persistent homol-
ogy exactly1. To our knowledge, this is the very first implementation thatcould
handle large size and high dimensional data in reasonable time and memory. We fo-
cus on uniformly/regularly sampled data which is common in visualization and data
analysis, i.e. image data consisting of pixels (2D images),voxels (3D scans, simula-
tions), or their higher-dimensional analogs, e.g., 4D time-varying data. In this work,
we use the name ’cubical’ for such data.

We depart from the standard method which involves triangulating the space, and
computing persistent homology of the resulting simplicialcomplex [10, 11]. We use
cubical complexes [15], which do not require subdivision ofthe input. The advan-
tage is twofold. First, the size of the complexes is significantly reduced, especially
for high dimensional data (see Section 5 for a quantitative analysis). Second, cubical
complexes allow the usage of more compact data-structures.

The standard persistence algorithm requires the computation of a sorted bound-
ary matrix. This step can be a significant bottleneck, especially in terms of memory
consumption. In this work we provide an efficient and compactalgorithm for this
step, using techniques from (non-persistence) cubical homology [15] (see Section
4).

Finally, in Section 7, we present experimental results. Comparison with exist-
ing packages shows significant efficiency improvement. We also explore how our
method scales with respect to data size and dimension. In conclusion, our frame-
work can handle data of large size and high dimension, and therefore, makes the
persistence computation of cubical data more feasible.

2 Related Work

The first algorithm for computing persistence [11] has cubicrunning time with re-
gard to the complex size (which is larger than the input size). Morozov [20] formu-
lated a worst case scenario for which the persistence algorithm reaches this asymp-

1 We emphasize that our work focuses on computing persistenceexactly. There are approximation
methods which trade accuracy for efficiency. See Section 2.



Cubical Persistence 3

totic bound. When focusing on 0-dimensional homology, union-find data structures
can be used to compute persistence in timeO(nα(n)) [10], whereα is the inverse of
the Ackermann functions andn is the input size. Milosavljevic et al. [18] compute
persistent homology in matrix multiplication timeO(nω) where the currently best
estimation ofω is 2.376. Chen and Kerber [6] proposed a randomized algorithm
whose complexity depends on the number of persistence pairswhose persistence is
over a certain threshold. Despite showing better theoretical complexity, it is unclear
whether these methods are better than the standard persistence algorithm in practice.

In terms of implementation, Morozov [19] provides a C++ codefor the persis-
tence algorithm. Chen and Kerber [7] devised a technique which, in practice, sig-
nificantly improves the matrix-reduction part of this algorithm. We build upon their
work, to improve the overall performance of the persistencealgorithm.

The application of cubical homology is straightforward in the areas of image
processing and visualization, where cubical data is the typical input. Non-persistent
cubical homology has found practical applications in a number of cases [21, 22]. A
few attempts of cubical persistence computations have beenmade recently [16, 25].
They do not, however, tackle the problem of performance. In [25], experiments with
datasets containing several thousands of voxels are reported. In comparison, real
world applications require processing of data in the range of millions or billions of
voxels.

Recently, Mrozek and Wanner [21] showed that cubical persistent homology can
be used for medium-sized datasets. A detailed performance summary is given for 2D
and 3D images. One downside of this approach is the dependency on the number
of unique values of the image. When such number is close to theinput size, the
complexity is prohibitively high. In Section 7, we compare our method with this
algorithm.

We must differentiate between two main types of persistencecomputations: exact
and approximative (where the persistence is calculated approximately). While we
focus on the first type, approximation is less computationally intensive, and thus is
important for large data. Bendich et al. [3] use octrees to approximate the input. A
simplicial complex of small size is then used to complete persistence computation.

3 Theoretical Background

Simplicial and cubical complexes. In computational topology, simplicial com-
plexes are frequently used to describe topological spaces.A simplicial complex
consists of simplices like vertices, edges and triangles. In general, ad-simplexis
the convex hull ofd+1 points. The convex hull of any subset of thesed+1 points
is a faceof this d-simplex. A collection of simplices,K, is asimplicial complexif:
1) for any simplex inK, all its faces also belong toK, and 2) for any two simplices
in K, their intersection is either empty, or a common face of them.

Next, we define cubical complexes. Anelementary intervalis defined as a unit
interval [k,k+1], or a degenerate interval[k,k]. For ad-dimensional space, acube



4 Hubert Wagner, Chao Chen, Erald Vuçini

(a) (b) (c) (d)

Fig. 1 Cubical complex triangulations: a) a 2D cubical complex, and b) its triangulation, c) a 3D
cubical complex, and d) its triangulation (only simplices which containV0 are drawn).

is a product ofd elementary intervalsI : ∏d
i=1 Ii. The number of non-degenerate

intervals in such product is thedimensionof this cube. 0-cubes, 1-cubes, 2-cubes and
3-cubes are vertices, edges, squares and 3D cubes (voxels) respectively. Given two
cubes:a,b⊆Rd, a is afaceof b if and only ifa⊆ b. A cubical complexof dimension
d is a collection of cubes of dimension at mostd. Similarly to the definition of a
simplicial complex, it must be closed under taking faces andintersections.

In this paper, we will use cubical complexes to describe the data. In Figure 1 we
show 2-dimensional and 3-dimensional cubical complexes, describing a 2D image
of size 3×3 and a 3D image of size 3×3×3. The corresponding simplicial com-
plex representations are also shown. We use one specific triangulation, namely, the
Freudenthal triangulation[13, 17]. Such triangulation is easy to extend to general
dimension.

Boundary matrix. For anyd-dimensionalcell (that is: simplex or cube), itsbound-
ary is the set of its (d−1)-dimensional faces. This extends linearly to the boundary
of a set ofd-cells, namely, ad-chain. Specifically, the boundary of a set of cells
is the modulo 2 sum of the boundaries of each of its elements. In general, if we
specify a unique index for each simplex, ad-chain corresponds to a vector inZnd

2 ,
wherend is the number ofd-dimensional cells in the complex. Furthermore, thed-
dimensional boundary operator can be written as and−1×nd binary matrix whose
columns are the boundaries ofd-cells, while rows represent (d−1)-cells.

Persistent homology. We review persistent homology [10, 11], focusing onZ2

homology. Due to space limitation, we do not introduce homology in this paper.
Please see [12] for an intuitive explanation, and [23, 10] for related textbooks.

Given a topological spaceX and afiltering function f:X→R, persistent homol-
ogystudies homological changes of the sublevel sets,X

t = f−1(−∞, t]. The algo-
rithm captures the birth and death times of homology classesof the sublevel set as it
grows fromX

−∞ toX
+∞, e.g., components as 0-dimensional homology classes, tun-

nels as 1-dimensional classes, voids as 2-dimensional classes, and so on. By birth,
we mean that a homology class comes into being; by death, we mean it either be-
comes trivial or becomes identical to some other class born earlier. The persistence,
or lifetime of a class, is the difference between the death and birth times. Homology



Cubical Persistence 5

classes with larger persistence reveal information about the global structure of the
spaceX, as described by the functionf .

Persistence could be visualized in different ways. One well-accepted idea is the
persistence diagram [8], which is a set of points in a two-dimensional plane, each
corresponding to a persistent homology class. The coordinates of such a point are
the birth and death time of the related class.

An important justification of the usage of persistence is thestability theorem.
Cohen-Steiner et al. [8] proved that for any two filtering functions f and g, the
difference of their persistence is always upperbounded by theL∞ norm of their dif-
ference:

‖ f −g‖∞ := max
x∈X
| f (x)−g(x)|.

This guarantees that persistence can be used as a signature.Whenever two persis-
tence outputs are different, we know that the functions are definitely different.

In our framework, for 2D images we assume 4-connectivity. Ingeneral, ford-
dimensional cubical data, we use 2d-connectivity.

Persistence computation. Edelsbrunner et al. [11] devised an algorithm to com-
pute persistent homology, which works in cubic time (in the size of a complex). It
requires preprocessing of the data (also see Figure 2). In case of images, function
f is defined on all pixels/voxels. First, these values are interpreted as values of ver-
tices of a complex. Next, thefiltration of the complex is computed and thesorted
boundary matrixis generated. This matrix is the input to thereduction algorithm.

Filtration can be described as adding cells with increasing values to a complex,
one by one. To achieve this, afiltration-building algorithmextends the function to
all cells of the complex, by assigning each cell the maximum value of its vertices.
Then, all cells are sorted in ascending order according to the function value, so that
each cell is added to the filtration after all of its faces. Such a sequence of cells
is called alower-star filtration. Having calculated the ordering of cells, a sorted
boundary matrix can be generated.

Data   Build 

Complex

Matrix

Reduction
Output

Persistent Homology Workflow in a Nutshell

Complex
Sorted 

Boundary 

Matrix

Generate Filtration

 & 

Boundary Matrix

Fig. 2 A workflow of the persistent homology computation.

In the reduction step, the algorithm performs column reductions on the sorted
boundary matrix from left to right. Each new column is reduced by addition with
the already reduced columns, until its lowest nonzero entryis as high as possible.
The reduced matrix encodes all the persistent homology information.



6 Hubert Wagner, Chao Chen, Erald Vuçini

4 Efficient Filtration-Building Algorithm

The filtration-building is one of the main bottlenecks of thepersistence algorithm. A
straightforward approach would choose to store the boundary relationship between
cells and their faces. In this section, we describe the first major contribution of the
paper, a new algorithm for the filtration-building step. Ouralgorithm uses the regular
structure of cubical complex and adapts a compact data structure which has shown
its power in non-persistent cubical homology.

Cubical complex representation. We first describe CubeMap, a compact represen-
tation of cubical complexes. To the best of our knowledge, a similar structure was
first introduced in CAPD library [1] for non-persistent cubical homology.

For an example 2D image with 5× 5 pixels see Figure 3. Due to the regular
structure, relationship between cells can be read immediately from their coordinates.
We can store the necessary information (i.e. order in the filtration, function value)
for each cell in a 9×9 array (Figure 3(c)). We can immediately get the dimension
of any cell (whether it is a vertex, edge, or square), as well as its faces andcofaces,
namely, cells of whom it is a face. We do this by checking coordinates modulo 2.
To explain this fact, we recall that we defined cubes as products of intervals. Even
coordinates correspond to degenerate intervals of a cube.

(a) (b) (c)

Fig. 3 a) Cubical complex built over a gray-scale 2D image with 5×5 pixels. Each vertex (yellow)
corresponds to a pixel. Edges (blue) and cubes (red) are constructed accordingly. b) The cubical
complex itself. c) The corresponding CubeMap, all informations for filtration-building are encoded
in a 9×9 array. Each element corresponds to a cell.

The aforementioned properties generalize for arbitrary dimensions. This is due
to the inductive construction of cubical complexes, and is related to cubes being
products of intervals.

Let us consider input data of dimensiond and sizewd, wherew is the num-
ber of vertices in each dimension. We store information attached to cells in ad-
dimensional array with(2w−1)d elements. This array is composed of overlapping
copies of arrays of size 3d. We call this structure theCubeMap.

The major advantage of the proposed data-structure is the improved memory
efficiency. Boundary relations are implicitly encoded in the coordinates of cells.
The coordinates itself are also implicit. Furthermore, we can randomly access each



Cubical Persistence 7

5 3

2

5

3

2

5 5

1

(a)

V(0) E(0) V(1)

V(3) V(2)

E(2) S(0) E(1)

E(3)

(b)

Fig. 4 a) Values off assigned to vertices and extended to all cubes. b) Cells are assigned indices
in the filtration. These indices are separate for each dimension. Vertices are marked as V, edges as
E, squares as S.

cell and quickly locate its boundaries. See Section 6 for further details and Section
7 for an experimental justification.

Filtration-building. Let us now present an efficient algorithm to compute a filtra-
tion of a cubical complex induced by a given functionf (see Algorithm 1). We use
the CubeMap datastructure to store additional informationfor each cell (function
value, filtration order). The outcome of this algorithm is a sorted boundary matrix,
being the input of the reduction step. Since in case of cubical data boundary matrices
have onlyO(d) non-zero elements per column, sparse representations are typically
used.

The intuition behind the algorithm is that when we iterate through all vertices in
descendingorder, we know that the vertices’ cofaces, which were not added to the
filtration, belong to their lower-stars, and can be added to the filtration. We cannot
build the boundary matrix in the same step, since the indicesof the adjacent cells
might be not yet computed. Do note that on line 5, filtration indices are assigned
from higher to lower. Figure 4 illustrates the algorithm. Exploiting the properties of
cubical complexes makes this algorithm efficient (refer to section 6 for details).

Algorithm 1 Computing filtration and sorted boundary matrix
Input: function f , given on vertices of a cubical complexK
Output: sorted boundary matrix, extension of functionf to all cells ofK
1: sort vertices ofK by values off (descending)
2: for each vertexVi in sorted orderdo
3: for each cubeCj with Vi as one of its verticesdo
4: if Cj wasnot assigned filtration indexthen
5: assign next (smaller) filtration index toCj

6: f (Cj )← f (Vi).
7: for each cubeCi of K do
8: column← filtration index ofCi

9: for each cubeB j in boundary ofCi do
10: row← filtration index ofB j

11: boundary matrix(row, column)← 1



8 Hubert Wagner, Chao Chen, Erald Vuçini

5 Sizes of Complexes

When switching from simplicial complexes to cubical complexes, the size of the
complex is significantly reduced. This is a clear improvement in both memory and
runtime efficiency. We should emphasize that the complexityof the standard re-
duction algorithm is given in the size of the complex, not thenumber of vertices.
Therefore, reducing the size of a complex has a significant impact.

In this section, we analyze how the ratio of the sizes of simplicial and cubi-
cal complexes increases with regard to the data dimension. We show that this ratio
increases exponentially with the dimension, which motivates the usage of cubical
approaches, such as ours. For simplicity we disregard boundary effects, assuming
that the number of cells lying on the boundary is insignificant2.

In Figure 1, we show examples of cubical complexes and their triangulations.
The ratio between the number of cofaces of the vertexV0 in a simplicial and in a
cubical complex is(6 : 4) and(26 : 8) for 2D and 3D complexes, respectively. This
is also the ratio of the size of simplicial and cubical complexes, since these selected
cells serve as theirgenerators.

For ad-dimensional data, we denote the concerned ratio asρd = Sd/Cd, where
Cd andSd are the sizes of a cubical complex and its triangulation, respectively. It
is nontrivial to give an exact formula ofρd, since the minimal-cardinality cube-
triangulation is an open problem [26]. Here we give a lower-bound ofρd for d≤ 7
by triangulating all cubes of a cubical complex separately in each dimension. When
triangulating ad-cube, we count only the resultingd-simplices, and their(d−1)-
dimensional intersections. Finally, taking into account the fact that certain simplices
will be common faces of multiple higher-dimensional simplices, we get

ρd ≥
∑d

i=0

(d
i

)

τi +∑d−1
i=0

( d
i+1

)

(τi+1−1)

2d

whereτd is the number ofd-simplices in a triangulation of ad-cube.
In Table 1 we present the values of such lower-bounds for different dimensions

(d = 1, · · · ,7). We consider two cases: optimal triangulation [26] and Freudenthal,
usingd! simplices. It is clear that in both cases the lower-bound increases exponen-
tially with regard to the data dimension.

This observation leads to the following conjecture. Such conjecture, if correct,
shows how algorithms based on cubical and simplicial complexes scale with respect
to the dimension.

Conjecture 1.ρd increases exponentially ind.

2 This assumption is realistic when complexes are large.



Cubical Persistence 9

Table 1 Lower-bounds of the size ratiosρd.

Dimension (d) 1 2 3 4 5 6 7

Optimal
τd 1 2 5 16 67 308 1493
lower-bound ofρd 1.0 1.5 2.75 5.62512.93733.968 90.265

Freudenthal
τd 1 2 6 24 120 720 5040
lower-bound ofρd 1.0 1.5 3.0 7.12519.37560.156213.062

6 Implementation Details

In this section we briefly comment on the techniques we used toenhance the perfor-
mance of our implementation. We focus on the choice of properdata-structures, and
exploiting various features of cubical complexes. We implemented this algorithm in
C++.

Filtration-building algorithm. We use a 2-pass modification of the standard
filtration-building algorithm. Reversing the iteration order over the vertices does
not affect the asymptotic complexity, but simplifies the first pass of the algorithm,
which resulted in better performance.

We calculate the time complexity of this algorithm. To do this precisely, we as-
sume that the dimensiond is not a constant. This is a fair assumption since we
consider general dimensions. We use ad-dimensional array to store our data, so
random access is notO(1), butO(d), as it takesd−1 multiplications and additions
to calculate the address in memory.

Let n be the size of input (the number of vertices in our complex). In total there
are O(2dn) cubes in the complex. We ignore what happens at boundaries ofthe
complex. Eachd-cube has exactly 2d boundary cubes, and each vertex has 3d−1
cofaces. Accessing each of them costsO(d). This yields the following complexity
of calculating the filtration and the boundary matrices:O(d3dn+d22dn).

Using the properties of CubeMap, we can reduce this complexity. Since the struc-
ture of the whole complex is regular, we can precalculate memory-offsets from
cubes of different dimensions and orientations to its cofaces and boundaries. Ac-
cessing all boundary cubes and cofaces takes constant amortized time. The pre-
processing time does not depend on input size and takes onlyO(d23d) time and
memory. With the CubeMap data structure, our algorithm can be implemented in
Θ(3dn+d2dn) time andΘ(d2dn) memory.

Storing boundary matrices. Now we present a suggestion regarding performance,
namely, the usage of a proper data-structure for storing thecolumns of (sparse)
boundary matrices. In [10] a linked-list data-structure issuggested. This seems to
be a sub-optimal solution, as it has an overhead of at least one pointer per stored
element. For 64-bit machines this is 8B - twice as much as the data we need to store
in a typical situation (one 32-bit integer).

Using an automatically-growing array, such as std::vectoravailable in STL is
much more efficient (speed-up by a factor of at least 2). Also the memory over-
head is much smaller - 16B per column (not per element as before). All the required



10 Hubert Wagner, Chao Chen, Erald Vuçini

operations have the same (amortized) complexity [9], assuming that adding an ele-
ment at the back can be done in constant amortized time. Also,iterating the array
from left to right is fast, due to memory-locality, which is not the case for linked-list
implementations.

7 Results

The testing platform of our experiments is a six-core AMD Opteron(tm) processor
2.4GHz with 512KB L2 cache per core, and 66GB of RAM, running Linux. Our al-
gorithm runs on a single core. We use 3D and 4D (3D+time) cubical data for testing
and comparing our algorithm. We compare our method with existing implementa-
tions. We measure memory usage, filtration-building and reduction times.

Comparing with existing implementations. We compare our implementation (re-
ferred to as CubPers) to three existing implementations:

1. SimpPers:(by Chen and Kerber [7]) Uses simplicial complexes. Both SimpPers
and CubPers use the same reduction algorithm, but our approach uses cubical
complexes and CubeMap to accelerate the filtration-building process.

2. Dionysus: (by Morozov [19]) This code is suited for more general complexes
and computes also other information like vineyards. We adapt this implementa-
tion to operate on cubical data, by triangulating the input,which is the standard
approach. Since this implementation takes a filtration as input, the time for build-
ing the filtration is not taken into account.

3. CAPD: (by Mrozek [21], a part of CAPD library [1]) We stress that this approach
was designed for data with a small number of unique function values, which is
not the case for the data we use. Additionally it produces andstores persistent
homology generators which incur a significant overhead.

In Tables 2 and 3 we compare the memory and times of our approach to the
aforementioned implementations. For testing we have used the Aneurysm dataset3.
In order to explore the behavior of the algorithms when the data size increases lin-
early, we uniformly scale the data into 503, 1003, 1503, 2003, using nearest neighbor
interpolation. Clearly, our implementation, CubPers, outperforms other programs in
terms of memory and time efficiency.

Due to the usage of CubeMap, the memory usage is reduced by an order of
magnitude. This is extremely important, as it enables the usage of much larger data-
sets on commodity computers. While SimpPers significantly improves over other
methods in terms of reduction time [7], our method further improves the filtration-
building time. It is also shown that using cubical complexesinstead of simplicial
complexes improves the reduction time.

Scalability. Table 4 shows how our implementation scales with respect to dimen-
sion. We used random data - each vertex is assigned an integervalue from 0 to 1023

3 From the Volvis repository (http://volvis.org/).



Cubical Persistence 11

Table 2 Memory consumption for the computation of persistence of the Aneurysm dataset for
different implementations. Several down-sampled versionof the original dataset were used. For
specific cases the results are not reported due to memory or time limitations.

50×50×50 100×100×100 150×150×150 200×200×200 256×256×256
CAPD 500MB 2700MB 16000MB - -
Dionysus 200MB 6127MB 21927MB 49259MB -
SimpPers 352MB 3129MB 11849MB 25232MB -

CubPers 42MB 282MB 860MB 2029MB 4250MB

Table 3 Times (in minutes) for the computation of persistence of theAneurysm dataset for differ-
ent techniques. For SimpPers and CubPers, we report both filtration-building time and reduction
time, the whole computation is the sum of the two times.

50×50×50 100×100×100 150×150×150 200×200×200 256×256×256
CAPD 0.26 12.3 134.55 - -
Dionysus 0.32 3.03 13.74 47.23 -
SimpPers (0.05+0.02) (0.43+0.16) (1.63+0.9) (3.53+3.33) -

CubPers (0.01+0.001) (0.10+0.01) (0.33+0.13) (0.87+0.43) (1.25+0.78)

Table 4 Times (in minutes) for the computation of persistence for one million vertices in different
dimensions (1-6). Both times for filtration and persistence(filtration+reduction) are given.

Dimension 1D 2D 3D 4D 5D 6D
Filtration 0.0170.05 0.15 0.55 1.65 3.70
Persistence (reduction)0.0670.12 0.23 0.87 4.80 17.70

(the choice was arbitrary). The distribution is uniform andthe number of vertices
(1,000,000) is constant for all dimensions. We can see that performance deteriorates
exponentially. This is understandable, since the size of a cubical complex increases
exponentially in dimension (2d). The size of its boundary matrix increases even
faster (d2d).

In Table 5 we report the timings and memory consumptions for several 3D
datasets4 and a 4D time-varying data5 consisting of 32 timesteps. We stress the
following three observations:

• Due to the significant improvement of memory efficiency, our implementation
could compute these data on commodity computers.

• Both memory and filtration-building times grow linearly in the size of data (num-
ber of voxels). This also reveals that for very large scale data (≥ 10003), the
memory consumption would be too large. In such a case, we would need an ap-
proximation algorithm (as in [3]) or an out-of-core algorithm.

4 From the Volvis repository (http://volvis.org/) and ICGA repository (www.cg.tuwien.ac.at)
5 From the Osirix repository (http://pubimage.hcuge.ch:8080/)



12 Hubert Wagner, Chao Chen, Erald Vuçini

• Reduction time varies for different data. Among all data-files we tested, two
medium (2563) cases (Christmas Tree and Christmas Present) took significantly
more reduction time. This data-dependent behavior of the reduction algorithm is
an open problem in persistent homology literature.

Table 5 Times in minutes for different 3D datasets and a 4D time-varying data (32 timesteps).
Times below 0.001 min were reported as 0.00.

Data set Size Memory (MB) Times (min)
Silicium 98×34×34 30 (0.02+0.07)
Fuel 64×64×64 82 (0.02+0.00)
Marschner-Lobb 64×64×64 82 (0.03+0.00)
Neghip 64×64×64 82 (0.03+0.00)
Hydrogene 128×128×128 538 (0.22+0.40)
Engine 256×256×128 2127 (1.07+0.30)
Tooth 256×256×161 2674 (1.43+1.48)
Christmas Present 246×246×221 3112 (2.43+264.35)
Christmas Tree 256×249×256 3809 (3.08+11.1)
Aneurysm 256×256×256 4250 (1.75+0.77)
Bonsai 256×256×256 4250 (1.98+0.93)
Foot 256×256×256 4250 (2.15+0.70)
Supine 512×512×426 26133(23.06+11.88)
Prone 512×512×463 28406(25.96+10.38)
Vertebra 512×512×512 31415 (26.8+7.58)
Heart (4D) 256×256×14×32 13243 (20.20+1.38)

Understanding time-varying data with persistence. With our efficient tool, we are
enabled to study 4D time-varying data using persistence. This is one of our future
research focuses. We conclude this section by a pilot study of a dataset represent-
ing a beating heart. We treat all four dimensions of this data(3 spatial and time)
equally6, and then compute the persistence diagrams (Figures 5(a)-5(d)). In Figure
5(e) we display graphs of the Betti numbers of the sublevel sets. Blue, red, green
and pink correspond to 0-3 dimensional Betti numbers, respectively.

8 Summary and Future Work

In this paper, we showed that our approach can be used to compute persistent ho-
mology for large cubical data-sets in arbitrary dimensions. Our experiments show
that our method is more efficient with regard to time and memory than the exist-
ing implementations. The reduction of memory usage is especially important, as it
enables the use of persistent homology for much larger datasets.

6 In general, this may not be the right approach, as it does not assume the non-reversibility of time.



Cubical Persistence 13

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

Birth (Function Value)

D
e

a
th

 (
F

u
n

ct
io

n
 V

a
lu

e
)

 

 

0−persistence

(a) 0D Persistence

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

Birth (Function Value)

D
e

a
th

 (
F

u
n

ct
io

n
 V

a
lu

e
)

 

 

1−persistence

(b) 1D Persistence

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

Birth (Function Value)

D
e

a
th

 (
F

u
n

ct
io

n
 V

a
lu

e
)

 

 

2−persistence

(c) 2D Persistence

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

Birth (Function Value)

D
e

a
th

 (
F

u
n

ct
io

n
 V

a
lu

e
)

 

 

3−persistence

(d) 3D Persistence

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
x 10

4

Function Value [0, MaxValue]

P
e

rs
is

te
n

ce
 F

re
q

u
e

n
cy

 

 

0−persistence

1−persistence

2−persistence

3−persistence

(e) Betti Numbers of Sublevel Sets

Fig. 5 Persistence diagrams of a beating heart.

There is a wide range of directions to be considered in the future research. We
consider further development of the proposed method. In particular, a parallel im-
plementation is a promising option. Further reduction of memory usage and moving
towards out-of-core computations are important directions, but also very challeng-
ing.

As pointed out by one anonymous reviewer, another reason forthe under-usage
of persistence in visualization is the lack of a good interface to analyze and interact
with persistence. With an efficient implementation in hands, we are motivated to
further explore this research direction.

Acknowledgments

This work was supported by the Austrian Science Fund (FWF) grant no. P20134-
N13 and the Austrian COMET program. The authors would like tothank Prof. Her-
bert Edelsbrunner and Dr. Michael Kerber for the fruitful discussions.



14 Hubert Wagner, Chao Chen, Erald Vuçini

References

1. Computer Assisted Proofs in Dynamics: CAPD Homology Library, http://capd.ii.uj.edu.pl.
2. C. L. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In Proceedings of IEEE

Visualization, pages 167–174, 1997.
3. P. Bendich, H. Edelsbrunner, and M. Kerber. Computing robustness and persistence for im-

ages. InProceedings of IEEE Visualization, volume 16, pages 1251–1260, 2010.
4. S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, and C. Landi.Multidimensional size functions for

shape comparison.J. Math. Imaging Vis., 32(2):161–179, 2008.
5. H. Carr, J. Snoeyink, and M. van de Panne. Flexible isosurfaces: Simplifying and displaying

scalar topology using the contour tree.Computational Geometry, 43(1):42–58, 2010.
6. C. Chen and M. Kerber. An Output-Sensitive Algorithm for Persistent Homology. InPro-

ceedings of the 27th annual symposium on Computational geometry, 2011.
7. C. Chen and M. Kerber. Persistent homology computation with a twist. In27th European

Workshop on Computational Geometry (EuroCG 2011), 2011.
8. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams.Discrete

and Computational Geometry, 37(1):103–120, 2007.
9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to algorithms. The

MIT press, 2009.
10. H. Edelsbrunner and J. Harer.Computational Topology, An Introduction.American Mathe-

matical Society, 2010.
11. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.

Discrete & Computational Geometry, 28(4):511–533, 2002.
12. D. Freedman and C. Chen.Computer Vision, chapter Algebraic topology for computer vision.

Nova Science, To appear.
13. H. Freudenthal. Simplizialzerlegungen von beschränkter Flachheit.Annals of Mathematics,

43(3):580–582, 1942.
14. A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient computation of morse-

smale complexes for three-dimensional scalar functions.IEEE Trans. Vis. Comput. Graph.,
13(6):1440–1447, 2007.

15. T. Kaczynski, K. Mischaikow, and M. Mrozek.Computational Homology, volume 157 of
Applied Mathematical Sciences. Springer-Verlag, 2004.

16. G. Kedenburg. Persistent Cubical Homology. Master’s thesis, University of Hamburg, 2010.
17. R. Kershner. The number of circles covering a set.American Journal of Mathematics,

61(3):665–671, 1939.
18. N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag Persistent Homology in Matrix Multi-

plication Time. InProceedings of the 27th annual symposium on Computational geometry,
2011.

19. D. Morozov. Dionysus : a C++ library for computing persistent homology.
http://www.mrzv.org/software/dionysus/.

20. D. Morozov. Persistence algorithm takes cubic time in worst case.BioGeometry News, Dept.
Comput. Sci., Duke Univ., Durham, North Carolina, 2005.

21. M. Mrozek and T. Wanner. Coreduction homology algorithmfor inclusions and persistent
homology.Computers and Mathematics with Applications, accepted, 2010.

22. M. Mrozek, M. Zelawski, A. Gryglewski, S. Han, and A. Krajniak. Extraction and analysis of
linear features in multidimensional images by homologicalmethods. preprint, 2010.

23. J. R. Munkres.Elements of Algebraic Topology.Addison-Wesley, Redwook City, California,
1984.

24. V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust on-line computation of
reeb graphs: simplicity and speed.ACM Trans. Graph., 26(58):1–8, 2007.

25. D. Strömbom. Persistent homology in the cubical setting: theory, implementations and appli-
cations. Master’s thesis, Luleå University of Technology, 2007.

26. C. Zong. What is known about unit cubes.Bull. Amer. Math. Soc. 42 (2005), 181-211, 2005.


