
Optimal Topological Cycles and Their
Application in Cardiac Trabeculae Restoration

Pengxiang Wu1, Chao Chen2, Yusu Wang3, Shaoting Zhang4, Changhe Yuan2

Zhen Qian5, Dimitris Metaxas1, and Leon Axel6

1 Rutgers University, New Brunswick, NY
2 CUNY Queens College, Flushing, NY
3 Ohio State University, Columbus, OH

4 University of North Carolina at Charlotte, Charlotte, NC
5 Piedmont Heart Institute, Atlanta, GA

6 NYU School of Medicine, New York, NY

Abstract. In cardiac image analysis, it is important yet challenging to
reconstruct the trabeculae, namely, fine muscle columns whose ends are
attached to the ventricular walls. To extract these fine structures, tra-
ditional image segmentation methods are insufficient. In this paper, we
propose a novel method to jointly detect salient topological handles and
compute the optimal representations of them. The detected handles are
considered hypothetical trabeculae structures. They are further screened
using a classifier and are then included in the final segmentation. We show
in experiments the significance of our contribution compared with previ-
ous standard segmentation methods without topological priors, as well as
with previous topological method in which non-optimal representations
of topological handles are used.

Keywords: topology data analysis, trabeculae, cardiac, segmentation,
homology localization

1 Introduction

The interior of a human cardiac ventricle is filled with fine structures including
the papillary muscles and the trabeculae, i.e., muscle columns of various width
whose both ends are attached to the ventricular wall (Figure 1). Accurately cap-
turing these fine structures is very important in understanding the functionality
of human heart and in the diagnostic of cardiac diseases. These structures com-
pose 23% of left ventricle (LV) end-diastolic volume in average and thus is critical
in accurately estimating any volume-based metrics, e.g., ejection fraction (EF)
and myocardial mass; these measures are critical in most cardiac disease diag-
nostics. A detailed interior surface model will also be the basis of a high quality
ventricular flow simulation [10], which reveals deeper insight into the cardiac
functionality of patients with diseases like hypokinesis and dyssynchrony.

With modern advanced imaging techniques, e.g., Computed Tomography
(CT), we can capture details within cardiac ventricles (Fig. 1(left)). However,



2 Pengxiang Wu et al .

Fig. 1. Left: our input CT image. Middle: interior of LV [8]. Right: our result (a 3D
triangle mesh) successfully captures the trabeculae (viewed from the valve).

most state-of-the-art cardiac analysis methods [17, 16], although very efficient,
can not accurately capture these complex structures. The challenge is twofold.
First, large variation of geometry and intensity of trabeculae makes it difficult to
distinguish them from noise. Second, most segmentation models employ global
priors, which tend to work against fine structures; the smoothness prior tends to
simplify the model and thus remove any fine structures. The shape prior, e.g.,
the active shape model (ASM), tends to use an average shape and thus remove
most fine-scale geometric details.

We exploit novel global information which is more suitable for the extraction
of trabeculae, namely, the topological prior. A trabeculae is naturally a topological
handle; both of its ends are attached to the wall, while the intermediate section
is freely mobile. Gao et al . [9] proposed a topological method that explicitly
computes topological handles which are salient compared with their surrounding
regions. The saliency is measured based on the theory of persistent homology
[7] and can be computed efficiently. These handles are further filtered using a
classifier and are included in the final segmentation. However, this method fails to
provide an ideal description of each detected handle. The generated non-optimal
descriptions carry noisy geometric information and will hurt the performance of
the classifier and segmentation module down the pipeline.

In this paper, we propose a new topological method that not only detects
salient topological handles, but also finds the ideal description of each handle.
Observe that at the end-diastole state, the heart is maximally relaxed and the
trabeculae are maximally stretched out. Therefore, we argue that an ideal de-
scription of a topological handle should be geometrically concise; being generally
straight rather than wiggling freely. Roughly speaking, a topological handle is

Fig. 2. Left: a topological handle and its representative cycles. The yellow one is the
shortest and best describes its geometry. Middle-left: segmentation result without topo-
logical prior. Most trabeculae are missed due to the smoothness prior. Middle-right:
result with topological prior but without optimal cycles [9]. The reconstructed trabec-
ulae wiggles. Right: our result, using topological prior and optimal cycles generates
straight trabeculae.



Optimal Topological Cycles 3

an equivalent class of loops that can be continuously deformed into each other
(Figure 2(left)). Any of these loops can be used to represent the handle. We
propose to compute the shortest one as it gives us the most concise descrip-
tion. In real data (Figure 2), we observe that computing optimal loops generates
straight trabeculae as desired (Fig. 2(right)), while previous topological method
using non-optimal loops generates wiggling trabeculae (Fig. 2(middle-right)).

Our technical contribution is threefold. First, we formulate a new optimiza-
tion problem, i.e., for each salient topological handle detected by persistent ho-
mology theory, compute its best geometric description (the shortest cycle). Sec-
ond, we prove a theorem (Theorem 1) as the foundation of the computation of
the desired optimal cycles. An algorithm based on homology localization theory
[1, 2] is proposed accordingly. Third, we propose a new A∗ search strategy to
solve the optimization problem efficiently in practice. The heuristic function of
the search strategy is designed based on insights into the problem.

In the last step of our system, accurate geometric features from these op-
timal loops are used to select correct topological handles as trabeculae and to
compute a high quality final segmentation. Figure 3 illustrates the pipeline of
our topological method. We validate our method by comparing with segmenta-
tion without topological priors and the topological method without geometric
optimization [9]. The ground truth of our data is acquired manually. See Section
4 for more details.

Contributions. Our contributions, i.e., the formulation and computation of op-
timal cycles of persistent homology classes, are also novel and important to the
topology data analysis community. While many algorithms have been proposed
to compute persistent homology [4, 6], the computation of optimal cycles repre-
senting them have never been tackled. The methodology proposed in this paper
will have broad applications in various persistent-homology-based data analytics
[3, 11, 14, 13].

2 Background

Within this paper, we assume the image domain, Ω ⊆ R3, is discretized into a
cubical complex, KΩ , i.e., a collection of vertices, edges, squares and cubes. Each
vertex corresponds to the center of a voxel. Each edge connects adjacent vertices.
Squares are convex hulls of adjacent four vertices. Cubes are convex hulls of
adjacent eight vertices. Any portion of the image domain can be approximated
by a subcomplex K ⊆ KΩ . In particular, we are interested in a sublevel set, i.e.,
the part whose image value is no greater than a given threshold, f−1t = {x ∈
Ω | f(x) ≤ t}, in which f : Ω → R is the image (intensity) function. A sublevel

Image Salient	
Handles

Optimal	
Cycles

Proposal	
Handles	
with	

Geometric	
Features

Final	
Segmentation

Selected	
Handles

Fig. 3. The flow of our method.



4 Pengxiang Wu et al .

set can be approximated as the complex, Kt ⊆ KΩ , which includes all elements
which fall completely within f−1t . See Figure 4(a) for an example complex in
2D and one of its sublevel sets (at threshold 2.0). Different sublevel sets have
different topology. Next, we introduce how the topology of a sublevel set Kt

is defined. Afterwards, we introduce how topology of different sublevel sets are
combined to recover the intrinsic structure of the image.

Homology. We focus on one-dimensional homology over Z2 field. For a general
setting, please refer to a standard algebraic topology textbook [12]. Assume a
given complex, K, we call its vertices, edges, squares and cubes the 0-, 1-, 2-
and 3-cells. Any set of p-cells form a p-chain. Fixing an index of all p-cells,
a p-chain can be written as an np dimensional binary vector, in which np is
the number of p-cells in K. All p-chains constitute an np dimensional vector
space over modulo-2 addition, called the chain group, denoted by Cp(K). The
boundary of a p-cell is a (p− 1)-chain comprising all the (p− 1)-cells bounding
it. Putting the boundaries of all p-cells together form a np−1 × np matrix called
the p-th boundary matrix, denoted by ∂p (Figure 4(b) and 4(c)). The boundary
of a p-chain, c, is the modulo-2 sum of all the boundaries of c’s elements, and
can be written as the product ∂pc. The set of all p-dimensional boundaries (p-
boundaries), called the p-th boundary group, is the image of the (p + 1)-th
boundary operator, Bp(K) = im ∂p+1.

A p-cycle is p-chain with zero boundary. The set of all p-cycles, called the
cycle group, is the kernel of the boundary operator, Zp(K) = ker ∂p. A boundary
is a cycle. But the opposite is not necessarily true. The boundary group is a
subspace of the cycle group. The quotient space of the latter over the former is
called the homology group, Hp := Zp/Bp. Each element in the homology group,
called a homology class, is an equivalent class of cycles whose differences are
boundaries of high-dimensional patches. Picking any element in a class h, zh ∈ h,
we can formally write h as h := [zh] = {zh + b | b ∈ Bp}. In this case, we call zh
the representative cycle of h, and h the homology class of zh.

Persistent homology. Given an image function defined over the image domain
Ω, simply selecting a single sublevel set and measuring its topology is insufficient.

a b c

def

1.5 0.0 2.5

1.32.01.7
KΩ

K2.0

(a) (b) (c)

zd

eb

(d)

Fig. 4. Computation of persistent homology. (a), a 2D cubical complex with given
function values on all vertices. We also draw the sublevel set at value 2.0. (b) and (c),
the boundary matrices of 1D and 2D, whose columns and rows are sorted according
to the function value. (d), A schematic illustration of a reduced boundary matrix. The
row and column of each pivot (red cross) give the coordinates of one persistence dot.



Optimal Topological Cycles 5

Instead, we need to jointly consider sublevel sets of all different thresholds. If
we increase a threshold t continuously from −∞ to +∞, the sublevel set f−1t
grows from an empty set to the whole image domain, Ω. During the process,
different topological structures will be born and dies. In Figure 5, we observe
two topological handles. The longer one is born at threshold b1 and dies at d1.
The shorter one is born at b2 and dies at d2. We capture the thresholds at which
each structure is born and dies, called its birth and death time. Intuitively, the
birth time is the maximal value along a handle and death time is the maximal
value inside the handle. Their difference, called the persistence, measures the
saliency of the handle.

These structures can be recorded as 2D dots, using their birth and death
as the x and y coordinates. The persistence of a dot/structure is its distance
from the diagonal (x = y). Figure 5(f) shows the point set, called the persistence
diagram, of the function in Figure 5(a). The theory of persistent homology [7]
provides a principled definition of these topological structures and an efficient
algorithm to detect all of them, in spite of their shapes and scales. The detected
salient topological structures are provably robust to noise [5], and thus reveal
intrinsic structures of the function. In general, a topological structure could be
a connected component, a handle, or a void (a thickened sphere). In this paper,
we focus on one-dimensional structures, i.e., handles.

Computation. Recall the sublevel sets of different thresholds are approximated
by intermediate complexes Kt ⊆ KΩ . If we sort all rows and columns of the
boundary matrices of KΩ according to the function values of the corresponding
cells, these sorted boundary matrices also encode the boundary operators of all
intermediate complexes; the boundary matrices of any complex Kt ⊆ KΩ are the
upper-left submatrices of those of KΩ . To compute the persistence homology, we
reduce all boundary matrices of KΩ using a column-wise Gaussian elimination
with special constraints: no columns can be swapped and we only add columns
from left to right. Finally, reading the pivot entries of the reduced matrices give
us the persistence diagram; the row and column of each pivot entry correspond
to the birth and death times of each dot in the persistence diagram. See Figure
4(d) for an illustration of the reduced matrix. This algorithm has a cubical
complexity, but is very efficient in practice.

(a) Inten-
sity

(b) Kb1 (c) Kb2 (d) Kd2 (e) Kd1 (f) Diagram

Fig. 5. Sublevel sets in persistent homology. (a) Synthetic intensity function. (b)-(e)
Sublevel sets at time b1 < b2 < d2 < d1. We also show the intensity inside the sublevel
sets. (f) the persistence diagram, with two dots corresponding to the two handles. At
time b1 and b2, the long handle and the short one are created. At time d2 and d1 the
short handle and the long one are destroyed.



6 Pengxiang Wu et al .

3 Method

The overall flow of our method is illustrated in Figure 3. First, we extract salient
topological handles from the image based on the theory of persistent homology.
Second, we compute optimal loops to represent salient handles. Geometric fea-
tures are extracted from each optimal loop and are associated to the correspond-
ing topological handle. The combined information is fed to a classifier which
selects good handles. Finally, the selected handles are combined with standard
image segmentation techniques to generate the final segmentation result.

It remain to solve the optimization problem for each topological handle. In
Section 3.1, we formalize the problem. In Section 3.2, we explain an algorithm
to solve the problem. This algorithm, although polynomial, is inefficient in both
time and space. To develop a practical system, we propose an efficient A* search
algorithm (Section 3.3). The heuristic function in the search is based on in-
sights into the topological computation. Due to space constraints, some of the
proofs are simplified or omitted. More details will be found in a technical report
accompanying this paper.

3.1 Optimal Loops for Persistent Homology

We compute an optimal cycle to represent a topological handle detected by per-
sistent homology, corresponding to a dot in the persistence diagram. Each handle
corresponds to a family of homology classes that are created and destroyed at
the same birth and death time. At the birth time, several homology classes are
created, and only some of them are destroyed at the death time of the handle.
We need to identify all these homology classes and find an optimal cycle repre-
senting either of them. This is different from a traditional homology localization
problem [1, 2], in which we compute the optimal cycle of a fixed homology class.

Problem 1 (Optimal Representative Cycle of a Persistence Dot) Given
a persistence dot p = (b, d), compute the shortest element in the set of all cycles
of Kb that are created at time b and become boundaries at time d.

Next, we prove our main theorem (Thm. 1), which provides an algebraic formu-
lation for the space of all representative cycles of a persistence dot, denoted by
RepCycles(p). This result is the foundation of the algorithms we propose in the
following sections.

Denoted by ∂̂2 the reduced 2D boundary matrix (Figure 4(d)). Without loss
of generality, we assume only one square has the function value d and one edge
has the function value b, denoted as eb. Let zd be the corresponding column,
whose pivot is at the row of eb. Let Z− be the matrix consisting of all columns
before column zd whose pivots are before eb. Let Z+ be the matrix consisting of
all columns after d whose pivots are before eb. In Figure 4(d), we select a fixed
dot and its corresponding column zd (green). All orange columns form Z− and
all purple columns constitute Z+. We have the following theorem.

Theorem 1 (Main) The set of representative cycles of p = (b, d) are the sum
of zd and linear combinations of columns in Z−, formally, RepCycles(p) =
{zd + [Z−]x,∀x}.



Optimal Topological Cycles 7

Proof. Since edge eb is the only new edge in Kb, any new cycle created at b
contains this edge. The following lemmas are straightforward.

Lemma 2 Any cycle in RepCycles(p) contains the edge eb.

Lemma 3 When the image domain Ω is Euclidean and has trivial topology,
columns [Z−, zb, Z+] constitute a basis of the cycles in complex Kb.

Based on these lemmas, we prove our theorem as follows. The set of all columns
in [Z−, zd, Z+] form a basis of all cycles of the complex Kb, Z1(Kb). Since all
cycles created at time b has to contain the edge eb, the space of all cycles of Kb

created at time b are in the format of zd+[Z−, Z+]x, ∀x. However, only columns
in Z− are on the left hand side of zd, and thus are boundaries in Kd. Therefore,
the cycles that are created at b and become boundaries at d are in the format of
zd + [Z−]x, ∀x. ut

For a more general case, when Ω is not trivial in topology, we can extend
the lemma by adding additional columns corresponding to essential cycles, i.e.,
cycles representing the intrinsic topological handles of Ω.

3.2 OptTopoDij: The First Algorithm

In this section, we introduce our first algorithm to compute the optimal cy-
cle within RepCycles(p). Our algorithm is based on an algebraic annotation
technique, which assigns all edges of a given complex different vectors. The an-
notation satisfies the property that if we walk along any cycle z and add up all
the annotations of the edges, the sum immediately certifies whether the cycle
belongs to the desired group of cycles RepCycles(p). This technique provides the
basis of an efficient algorithm to search through RepCycles(p) for the optimal
one despite its exponential size. First, we introduce the annotation technique in
details.

Annotation. Let g′ = card(Z−) and g = card(Z+) be the numbers of columns
in Z− and Z+, respectively. Due to Lemma 3, any cycle of Kb can be written
as a linear combination of columns of Z = [Z−, zd, Z+], formally, z = [Z]ŷz. We
call ŷz the coordinate of z w.r.t. the cycle basis Z. The length of ŷz is g′+ g+ 1.
We are particularly interested in the coordinate of the cycle z w.r.t. zd and Z+.
We call the last g + 1 entries of ŷz z’s coordinate w.r.t. [zd, Z+], or simply z’s
coordinate. Denote by yz such coordinate.

Definition 1 (Annotation). An annotation is a mapping from edges of Kb

to (g + 1)-dimensional binary vectors, α : EKb → Zg+1
2 , satisfying the following

property. For any cycle of Kb, z, summing the annotations of its edges gives
the coordinate of z, formally,

∑
e∈z α(e) = yz. For any one-dimensional chain,

whether it is a cycle or not, we say its annotation is the sum of the annotations
of its edges, α(c) =

∑
e∈c α(e).

An annotation can be computed by the following algorithm. First, we compute
a spanning tree of Kb, T . Any edge that does not belong to T , called a sentinel
edge, form a unique cycle with the tree. We compute the coordinate of such cycle,



8 Pengxiang Wu et al .

ze, by solving the equation Zy = ze and keeping the last g + 1 entries of the
solution. Note that ze is both a cycle and a binary vector in the reduced matrix
∂̂2. The coordinate is used as the annotation of the corresponding sentinel edge,
e. Any edge in the spanning tree has 0 annotation. Computing the annotations
for all edges can be achieved in matrix multiplication time O(nω), in which n is
the size of Kb. Now we are ready to introduce the main algorithm.

Algorithm. Our algorithm constructs a new graph Ĝ based on the given complex
and the computed annotation, so that the optimal cycle problem is equivalent
to the shortest path problem in the new graph Ĝ, and thus can be solved using
Dijkstra’s algorithm.

Denote by G = (V, E) the underlying graph of the subcomplex Kb. We con-

struct a new graph, Ĝ = (V̂, Ê) as follows. The vertices of the new graph is 2g+1

many copies of the original vertex set, V̂ = V × Zg+1
2 . Vertices in each copy

correspond to a different possible annotation. Next, we add 2g+1 copies of edges
into the new graph as follows. For each edge (u, v) with annotation α(u, v) in G,

for each vertex (u, β) ∈ V̂, we add an edge connecting (u, β) and (v, β+α(u, v)).
Recall the eb = (ub, vb) is the new edge in Kb. By Lemma 2, all cycles in

RepCycles(p) contain eb. The following theorem gives us an algorithm. The proof
is omitted due to space constraints.

Theorem 4 In graph Ĝ, assign infinite weight to any copies of the critical edge
eb, ((ub, ∗), (vb, ∗)), and weight one to all other edges. Computing the desired
shortest cycle is equivalent to computing the shortest path from (ub, 0) to (vb, β0),
in which β0 is the annotation with one at the first entry and zero at the rest
entries, (1, 0, · · · , 0)T .

In summary, our algorithm is as follows. Compute edge annotations for all edges.
Construct the graph Ĝ based on the annotations. In Ĝ, compute the shortest path
from (ub, 0) to (vb, β0) using Dijkstra’s algorithm. The complexity is O(nω +
2ggn log n). Under certain mild assumptions, we can show that the algorithm is
polynomial as g is upperbounded by a constant cθ. More details can be found in
the technical report.

3.3 OptTopoA*: An Improved Algorithm

Our algorithm, although polynomial, is exponential to the number of salient
structures, cθ. In particular, the constructed graph Ĝ has a size of O(2cθn). The

running time of the Dijkstra’s algorithm on Ĝ is O(cθ2
cθn log n). In practice,

both the time and space complexity can be too large when cθ is relatively large.
In this section, we propose a heuristic search method to solve the problem

more efficiently. We use the A* algorithm so that we do not have to explicitly
construct the whole graph, Ĝ, and explore all its vertices. Instead, we only exploit
a vertex when necessary, based on a heuristic function. Although the worst case
complexity is not better, an A* algorithm often leads to better performance in
practice, given a well designed heuristic function.

Recall our goal is to find the shortest path from ûb = (ub, 0) to v̂b = (uv, β0)

within the graph Ĝ. At any intermediate vertex ŵ, we have the cost of the



Optimal Topological Cycles 9

partially completed path from ûb to ŵ, COST(ŵ), and a heuristic function es-
timating the cost from ŵ to v̂b, HEU(ŵ). At every iteration, a new node with
the minimal estimated total cost COST(ŵ)+HEU(ŵ) is selected and expanded,
until the target v̂b is reached. A* is guaranteed to find the global optimum.

It remains to define a good heuristic function, HEU(ŵ), which is a lowerbound
of the true shortest distance between ŵ and the target v̂b. Let β be the difference
of the annotations of ŵ and v̂b. The true shortest path from ŵ to v̂b is the shortest
path connecting w and vb under the constraint that its annotation is β. Formally,
the true shortest distance from ŵ to v̂b is minγ∈Γ (w,vb):α(γ)=β card(γ), in which
Γ (w, vb) is the space of all paths connecting w and vb in the original graph G.
Note that we are trying to avoid directly computing such distance. Instead, we
approximate it using the following heuristic function.

HEU(ŵ) = max(HEU1(ŵ),HEU2(ŵ), · · · ,HEUg+1(ŵ)), in which

HEUi(ŵ) = argminγ∈Γ (w,vb):α(γ)i=βi
card(γ).

Here α(γ)i and βi are the i-th entries of the annotation of γ and the difference
annotation β, respectively. Intuitively, the cost of ŵ is the optimal length of
paths from w to vb with a fixed annotation β. We construct g + 1 heuristic
function, HEUi(ŵ), each of which is the shortest distance with paths whose i-th
bit annotation is equal to βi. Since each such heuristic function is a lowerbound
of the cost function, taking their maxima is still a valid heuristic and a tighter
lowerbound of the cost function.

Finally, we explain how to compute these heuristic functions. For HEUi(ŵ),
consider the set of all edges in the original graph G whose i-th bit annotation is
one, called Ei. A path, γ, has the i-th bit of its annotation being one if and only
if it contains an odd number of edges from Ei. So depending on whether βi is
one or zero, we compute the shortest path from w to vb with either odd or even
number of edges in Ei. This can be achieved by constructing two copies of the
original graph, G, and add an edge connecting vertices across copies if it belongs
to Ei and connecting vertices within a same copy if it does not belong to Ei. A
Dijkstra’s algorithm on this graph gives HEUi(ŵ) as desired.

4 Experiments

We validate the proposed method on synthetic and real cardiac images. We
compare two versions of our methods and two baselines: (1) RegComp: a clas-
sic segmentation method without topological prior, region competition [18]; (2)
NaiveTopo: the naive topological method without optimal representative cycle
computation [9]; (3) OptTopoDij : our topological method which computes the

optimal representative cycles by constructing the graph Ĝ explicitly and running
Dijkstra’s algorithm; (4) OptTopoA* : our topological method which computes
the optimal cycle using A* search. RegComp is implemented in ITK-SNAP [15].
All other three are implemented using C++, and are run on a computer with
Intel(R) Xeon(R) CPU E5-1660v3 and 32GB RAM on Windows 8.1.



10 Pengxiang Wu et al .

Synthetic experiment 1: non-optimal vs. optimal cycles. We compute
persistent homology of the synthetic image in Figure 5(a) and generate cycles
to represent the long handle. In Figure 2(left), we show the cycles generated by
the baseline topological method, NaiveTopo (in cyan color), and by our method
OptTopoDij (in yellow). This example shows that the quality of generated cycle
can be very unsatisfying without the proposed optimization algorithm.

Synthetic experiment 2: scalability. Having established the necessity of com-
puting the optimal cycles. We show how important the A* search strategy is in
practice. We run our two topological methods, OptTopoDij and OptTopoA*,
on synthetic examples with increasing topological complexity, measured by the
number of handles. To compute the optimal cycles, we need to construct the
graph Ĝ, whose size is exponential to the number of handles. In Figure 6(a)(b),
we show the memory and time consumption of the two methods. See Figure
6(c) for example input images (each has 400×400 pixels). While the expense of
OptTopoDij increases exponentially as we increase the number of handles in the
input image, the expense of OptTopoA* stays linear.

Real experiments. We validate our method on a real patient dataset consisting
of six cardiac CT images at the end-diastolic state (512×512×320 voxels with
spacial resolution from 0.3mm to 0.5mm). For each image, we compute the
persistence diagram (Figure 6(d)) and then compute the optimal cycle for each
salient persistence dot (persistence ≥ 80, see Figure 6(e)). The running time
is about seven minutes and the memory is about six to ten GB. This is about
the same expense as the topological method without optimal cycle computation,
thanks to the high efficiency of the A* search strategy.

After representative cycles of salient handles are extracted, their geometric
features, e.g., birth time, death time, relative positions in the ventricle, etc., are
used to train a linear SVM classifier, which selects the handles to be included in
the final segmentation. We run a six-fold testing; use handles from five images
for training and handles from the remaining image for testing, repeat for six
times. The prediction accuracy of the classifier is 85.49%±5.25%. The prediction
accuracy are similar for both NaiveTopo and OptTopoA*. The reason is the
geometric features we are extracting are too simple. Therefore the geometric
information of our optimal cycles are not fully leveraged.

However, the optimal cycles do improve our final segmentation quality as they
avoid generating wiggling trabeculae. For each handle selected by the classifier,
we add the corresponding cycles (thickened) into the standard segmentation

2 4 6 8 10
Number of Handles

0

1

2

3

4

5

6

7

8

9

M
em

or
y 

(G
B)

OptTopoDij
OptTopoA*

2 4 6 8 10
Number of Handles

0

5

10

15

20

25

30

Ti
m

e 
(s

ec
on

ds
)

OptTopoDij
OptTopoA*

(a) (b) (c) (d) (e)

Fig. 6. (a) and (b): memory and time of synthetic data with different numbers of
handles. (c): three example input images with different numbers of handles. (d): the
persistence diagram of a real heart image. (e): the relationship between the persistence
threshold and accuracy.



Optimal Topological Cycles 11

result to generate the final mesh. We report the distance error of the result
mesh from the ground truth. The performance of RegComp, NaiveTopo and
OptTopoA* is reported below. See Figure 7 and 2 for qualitative comparisons.

RegComp NaiveTopo OptTopoA*

Distance from GT 0.1862 ± 0.7503 0.1258 ± 0.3810 0.0097 ± 0.1701

The ground truth of our data is extremely difficult to obtain. To train the
classifier, we visually inspect each topological handle and decide whether it is a
trabeculae based on the intensity function in the surrounding area. To obtain
the ground truth mesh, we first use selected handles to generate the initial mesh,
and then fine-tune the mesh manually.

Discussion. We observe that without topological priors, most trabeculae are
missed. Using topological method but without optimal cycles, the final mesh
tends to have wiggling handles. Using our method, the optimal cycles restore
trabeculae with high quality mesh. But the classifier may still make mistakes,
leading to missing trabeculae in the final segmentation. In the future, we plan to
extract more detailed geometric and appearance features based on the optimal
cycles, in order to further improve the classifier performance. Our ambitious goal
is to develop general purpose topological features for the analysis of images of
complex systems, e.g., cardiac trabeculae, neurons, cells, etc.

Fig. 7. Qualitative comparison. Top row: segmentation results of three methods, Reg-
Comp, NaiveTopo and OptTopoA*. Bottom row: the distance from the ground truth
to the segmentation result, rendered on the ground truth mesh. Blue regions are the
parts of the ground truth mesh that are not captured by the algorithms.

Acknowledgment. The research of Chao Chen is partially supported by the
grants NSF PSC-CUNY 69844-00 47.



12 Pengxiang Wu et al .

References

1. O. Busaryev, S. Cabello, C. Chen, T. K. Dey, and Y. Wang. Annotating sim-
plices with a homology basis and its applications. In Scandinavian Workshop on
Algorithm Theory, pages 189–200. Springer Berlin Heidelberg, 2012.

2. C. Chen and D. Freedman. Hardness results for homology localization. Discrete
& Computational Geometry, 45(3):425–448, 2011.

3. C. Chen, D. Freedman, and C. H. Lampert. Enforcing topological constraints in
random field image segmentation. In CVPR, pages 2089–2096, 2011.

4. C. Chen and M. Kerber. An output-sensitive algorithm for persistent homology.
Computational Geometry, 46(4):435–447, 2013.

5. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1):103–120, 2007.

6. T. K. Dey, F. Fan, and Y. Wang. Computing topological persistence for simpli-
cial maps. In Proceedings of the thirtieth annual symposium on Computational
geometry, page 345. ACM, 2014.

7. H. Edelsbrunner and J. Harer. Computational topology: an introduction. Amer
Mathematical Society, 2010.

8. J. Edwin P. Ewing. Gross pathology of idiopathic cardiomyopathy — Wikipedia,
the free encyclopedia, 2016. [Online; accessed 09-December-2016].

9. M. Gao, C. Chen, S. Zhang, Z. Qian, D. Metaxas, and L. Axel. Segmenting the pap-
illary muscles and the trabeculae from high resolution cardiac ct through restora-
tion of topological handles. In IPMI, 2013.

10. S. Kulp, M. Gao, S. Zhang, Z. Qian, S. Voros, D. Metaxas, and L. Axel. Using
high resolution cardiac CT data to model and visualize patient-specific interactions
between trabeculae and blood flow. In MICCAI, LNCS, pages 468–475. 2011.

11. Y. Li, G. Ascoli, P. P. Mitra, and Y. Wang. Metrics for comparing neuronal tree
shapes based on persistent homology. bioRxiv, page 087551, 2016.

12. J. R. Munkres. Elements of algebraic topology, volume 2. Addison-Wesley Menlo
Park, 1984.

13. N. Singh, H. D. Couture, J. Marron, C. Perou, and M. Niethammer. Topologi-
cal descriptors of histology images. In Proceedings of the MICCAI Workshop on
Machine Learning in Medical Imaging (MLMI), 2014.

14. E. Wong, S. Palande, B. Wang, B. Zielinski, J. Anderson, and P. T. Fletcher. Kernel
partial least squares regression for relating functional brain network topology to
clinical measures of behavior. In Biomedical Imaging (ISBI), 2016 IEEE 13th
International Symposium on, pages 1303–1306. IEEE, 2016.

15. P. Yushkevich, J. Piven, H. Hazlett, R. Smith, S. Ho, J. Gee, and G. Gerig. User-
guided 3d active contour segmentation of anatomical structures: significantly im-
proved efficiency and reliability. Neuroimage, 31(3):1116–1128, 2006.

16. X. Zhen, H. Zhang, A. Islam, M. Bhaduri, I. Chan, and S. Li. Direct and simultane-
ous estimation of cardiac four chamber volumes by multioutput sparse regression.
Medical Image Analysis, 2016.

17. Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Four-
chamber heart modeling and automatic segmentation for 3D cardiac CT volumes
using marginal space learning and steerable features. TMI, 27(11):1668 –1681, nov.
2008.

18. S. Zhu, T. Lee, and A. Yuille. Region competition: unifying snakes, region growing,
energy/Bayes/MDL for multi-band image segmentation. In ICCV, pages 416 –423,
June 1995.


